Trả lời câu hỏi 1 Bài 6 trang 84 Toán 9 Tập 2

Cho đoạn thẳng CD...

Quảng cáo

Đề bài

Cho đoạn thẳng \(CD\).

a) Vẽ ba điểm \(N_1;N_2;N_3\) sao cho \( \widehat {CN_1D}=\widehat {CN_2D}=\widehat {CN_3D}=90^0\)

b) Chứng minh rằng các điểm \(N_1;N_2;N_3\) nằm trên đường tròn đường kính \(CD.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Vẽ hình

b) Sử dụng: Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.

Lời giải chi tiết

a) Vẽ hình.

b) Gọi \(I\) là trung điểm cạnh \(CD.\)

Vì tam giác \(C{N_1}D\) vuông tại \({N_1}\) nên \(I{N_1} = IC = ID = \dfrac{{CD}}{2}\)

Tương tự với hai tam giác vuông \(C{N_2}D;C{N_3}D\) ta có \(I{N_2} = I{N_3} = IC = ID = \dfrac{{CD}}{2}\)

Vậy \(I{N_1} = I{N_2} = I{N_3} = \dfrac{{CD}}{2}\)  hay \({N_1};{N_2};{N_3}\) thuộc đường tròn đường kính \(CD.\)

loigiaihay.com

 

 

 

 

 

Quảng cáo
list
close
Gửi bài