Lý thuyết tứ giác nội tiếp

Định nghĩa tứ giác nội tiếp

Quảng cáo

1. Định nghĩa

Một tứ giác có bốn đỉnh nằm trên một đường tròn gọi là tứ giác nội tiếp đường tròn (gọi tắt là tứ giác nội tiếp)

2. Định lí

Trong một tứ giác nội tiếp, tổng số đo hai góc đối diện bằng \(180^0\)

Ví dụ: Tứ giác \(ABCD\) nội tiếp đường tròn \((O)\)

=> \(\left\{\begin{matrix} \widehat{A}+\widehat{C}=180^{\circ}\\ \widehat{B}+\widehat{D}=180^{\circ} \end{matrix}\right.\)

3. Định lí đảo

Nếu tứ giác có tổng số đo hai góc đối diện bằng \(180^0\) thì tứ giác đó nội tiếp được đường tròn.

4. Một số dấu hiệu nhận biết tứ giác nội tiếp

- Tứ giác có tổng hai góc đối bằng \(180^\circ \). 

- Tứ giác có góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối với đỉnh đó.

- Tứ giác có bốn đỉnh cách đều một điểm (mà có thể xác định được). Điểm đó là tâm đường tròn ngoại tiếp tứ giác.

- Tứ giác có hai đỉnh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới cùng một góc \(\alpha \).

 

 

 

Quảng cáo

Xem thêm tại đây: Bài 7. Tứ giác nội tiếp
Gửi bài tập - Có ngay lời giải