Lý thuyết Phương trình bậc nhất một ẩn SGK Toán 8 - Chân trời sáng tạo

Phương trình bậc nhất một ẩn là gì?

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Khoa học tự nhiên

Quảng cáo

1. Phương trình một ẩn

Một phương trình với ẩn x có dạng \(A\left( x \right){\rm{ }} = {\rm{ }}B\left( x \right)\), trong đó vế trái A(x) và vế phải B(x) là hai biểu thức có cùng một biến x.

Ví dụ: \(3x{\rm{ }}--{\rm{ }}1{\rm{ }} = {\rm{ }}2x{\rm{ }} + {\rm{ }}3;{\rm{ }}3x{\rm{ }} = {\rm{ }}5\) là các phương trình ẩn x.

Giá trị của biến làm cho hai vế của phương trình có giá trị bằng nhau gọi là nghiệm của phương trình đó.

Ví dụ: \(x{\rm{ }} = {\rm{ }}2\) là nghiệm của phương trình \(2x{\rm{ }} = {\rm{ }}x{\rm{ }} + {\rm{ }}2\) vì thay \(x{\rm{ }} = {\rm{ }}2\) vào phương trình, ta được 2.2 = 2 + 2

2. Phương trình bậc nhất một ẩn

Khái niệm:

Phương trình dạng ax + b = 0, với a và b là hai số đã cho và \(a \ne 0\), được gọi là phương trình bậc nhất một ẩn.

Việc tìm các nghiệm của một phương trình gọi là giải phương trình đó.

Cách giải:

Phương trình bậc nhất ax + b = 0 (\(a \ne 0\)) được giải như sau:

\(ax + b = 0\)

\(ax =  - b\) (chuyển b từ vế trái sang vế phải và đổi dấu thành –b)

\(x =  - \frac{b}{a}\) (chia hai vế cho a)

Vậy phương trình có nghiệm \(x =  - \frac{b}{a}\).

Ví dụ: Giải phương trình: \(3x + 11 = 0\)

Ta có: \(3x + 11 = 0 \Leftrightarrow 3x =  - 11 \Leftrightarrow x =  - \frac{{11}}{3}\)

Vậy nghiệm của phương trình là \(x =  - \frac{{11}}{3}\).

Chú ý: Quá trình giải phương trình có thể dẫn đến trường hợp đặc biệt là hệ số của ẩn bằng 0. Khi đó, phương trình có thể không có nghiệm (vô nghiệm) hoặc nghiệm đúng với mọi x.

 

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close