1.Định nghĩa tích phân
Cho hàm số f(x) liên tục trên đoạn \(\left[ {a;b} \right]\). Nếu F(x) là một nguyên hàm của hàm số f(x) trên đoạn \(\left[ {a;b} \right]\) thì hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu là \(\int\limits_a^b {f(x)dx} \). |
2. Tính chất của tích phân
- \(\int\limits_a^b {kf(x)dx = k\int\limits_a^b {f(x)dx} } \) (k là hằng số)
- \(\int\limits_a^b {\left[ {f(x) + g(x)} \right]} dx = \int\limits_a^b {f(x)dx + \int\limits_a^b {g(x)dx} } \)
- \(\int\limits_a^b {\left[ {f(x) - g(x)} \right]} dx = \int\limits_a^b {f(x)dx - \int\limits_a^b {g(x)dx} } \)
- \(\int\limits_a^b {f(x)dx = \int\limits_a^c {f(x)dx + \int\limits_c^b {f(x)dx} } } \) (a<c<b)
|
3. Tích phân của một số hàm số sơ cấp
Với \(\alpha \ne - 1\), ta có: \(\int\limits_a^b {{x^\alpha }dx} = \left. {\frac{{{x^{\alpha + 1}}}}{{\alpha + 1}}} \right|_a^b = \frac{{{b^{\alpha + 1}} - {a^{\alpha + 1}}}}{{\alpha + 1}}\) |
b) Tích phân của hàm số \(f(x) = \frac{1}{x}\)
Với hàm số \(f(x) = \frac{1}{x}\) liên tục trên đoạn \(\left[ {a;b} \right]\), ta có:
\[\int\limits_a^b {\frac{1}{x}dx = } \left. {\ln \left| x \right|} \right|_a^b = \ln \left| b \right| - \ln \left| a \right|\] |
c) Tích phân của hàm số lượng giác
- \(\int\limits_a^b {\sin xdx = - \cos x_a^b} = - \cos b - ( - \cos a) = \cos a - \cos b\)
- \(\int\limits_a^b {\cos xdx = \left. {\sin x} \right|_a^b} = \sin b - \sin a\)
- \(\int\limits_a^b {\frac{1}{{{{\sin }^2}x}}dx = \left. { - \cot x} \right|_a^b} = - \cot b - ( - \cot a) = \cot a - \cot b\)
- \(\int\limits_a^b {\frac{1}{{{{\cos }^2}x}}dx = \left. {\tan x} \right|_a^b} = \tan b - \tan a\)
|
d) Tích phân của hàm số mũ
Với \(a > 0,a \ne 1\), ta có: \(\int\limits_\alpha ^\beta {{a^x}dx} = \left. {\frac{{{a^x}}}{{\ln a}}} \right|_\alpha ^\beta = \frac{{{a^\beta } - {a^\alpha }}}{{\ln a}}\) |