Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức

1. Đạo hàm của tổng, hiệu, tích, thương

Quảng cáo

1. Đạo hàm của tổng, hiệu, tích, thương

Giả sử u = u(x), v = v(x) là các hàm số có đạo hàm tại điểm x thuộc khoảng (a; b). Khi đó

\(\begin{array}{*{20}{l}}{{{\left( {u + v} \right)}^\prime } = u' + v';}\\{{{\left( {u - v} \right)}^\prime } = u' - v';}\\{{{\left( {uv} \right)}^\prime } = u'v + uv';}\\{{{\left( {\frac{u}{v}} \right)}^\prime } = \frac{{u'v - uv'}}{{{v^2}}}\left( {v = v\left( x \right) \ne 0} \right);}\end{array}\)

\(\left( {ku} \right)' = ku'\) (k là hằng số);

\(\left( {\frac{1}{v}} \right)' =  - \frac{{v'}}{{{v^2}}}\left( {v \ne 0} \right)\).

2. Đạo hàm của hàm hợp

Nếu hàm số u = g(x) có đạo hàm tại x là \(u{'_x}\) và hàm số y = f(u) có đạo hàm tại u là \(y{'_u}\) thì hàm hợp y = f(g(x)) có đạo hàm tại x là \(y{'_x} = y{'_u}.u{'_x}\).

3. Bảng đạo hàm của một số hàm số sơ cấp cơ bản và hàm hợp

 

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close