Hoạt động 4 trang 125 Tài liệu dạy – học Toán 9 tập 1

Giải bài tập Cho đường tròn (O) và hai dây AB, CD khác đường kính.

Quảng cáo

Đề bài

 

Cho đường tròn (O) và hai dây AB, CD khác đường kính. Từ O hạ OH và OK theo thứ tự vuông góc với AB và CD.

Hãy  điền vào chỗ chấm (…) để chứng minh :

Nếu AB = CD thì OH = OK.

Xét hai tam giác vuông OHB và OKD, ta có :

OB = OD (…………..)

HB = KD (…………..)

Suy ra \(\Delta OHB = \Delta OKD\)

Do đó OH = OK.

Lời giải chi tiết

 

Xét hai tam giác vuông OHB và OKD có:

\(OB = OD\) (cùng bằng bán kính của \(\left( O \right)\))

\(HB = KD\) (do \(HB = \dfrac{1}{2}AB,\,\,KD = \dfrac{1}{2}CD,\)\(\,\,AB = CD\,\,\left( {gt} \right)\))

Suy ra \(\Delta OHB = \Delta OKD\) (cạnh góc vuông – cạnh huyền)

Do đó \(OH = OK\) (2 cạnh tương ứng)

 Loigiaihay.com

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close