Giải mục 6 trang 51, 52 SGK Toán 11 tập 2 - Kết nối tri thứcTháp lớn tại Bảo tàng Louvre ở Paris (H.7.66) Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
HĐ11 Video hướng dẫn giải Tháp lớn tại Bảo tàng Louvre ở Paris (H.7.66) (với kết cấu kính và kim loại) có dạng hình chóp với đây là hình vuông có cạnh bằng 34 m, các cạnh bên bằng nhau và có độ dài xấp xỉ 32,3 m (theo Wikipedia.org). Giải thích vì sao hình chiếu của đỉnh trên đây là tâm của đáy tháp. Phương pháp giải: Dựa vào kết quả bài 7.13 trang 43 là hai đường xiên bằng nhau khi và chỉ khi hình chiếu của chúng cũng bằng nhau Lời giải chi tiết: Tháp lớn tại Bảo tàng Louvre ở Paris có dạng hình chóp với các cạnh bên bằng nhau nên hình chiếu của đỉnh trên đáy tháp sẽ cách đều 4 đỉnh ở đáy mà đáy là hình vuông do đó hình chiếu của đỉnh là tâm của đáy tháp. HĐ12 Video hướng dẫn giải Cho hình chóp S.A1A2...An. Gọi O là hình chiếu của S trên mặt phẳng (A1A2...An). a) Trong trường hợp hình chóp đã cho là đều, vị trí của điểm O có gì đặc biệt đối với đa giác đều A1A2...An? b) Nếu đa giác A1A2...An là đều và O là tâm của đa giác đó thì hình chóp đã cho có gì đặc biệt? Phương pháp giải: Dựa vào kết quả bài 7.13 trang 43 là hai đường xiên bằng nhau khi và chỉ khi hình chiếu của chúng cũng bằng nhau Lời giải chi tiết: a) Hình chóp S.A1A2...An đều nên SA1 = SA2 = … = SAn Vì O là hình chiếu của S trên mặt phẳng (A1A2...An) nên OA1, OA2, …, OAn lần lượt là hình chiếu của SA1, SA2, …, SAn \( \Rightarrow \) OA1 = OA2 = … = OAn \( \Rightarrow \) O là tâm đường tròn ngoại tiếp đa giác đáy A1A2...An b) Nếu đa giác A1A2...An là đều và O là tâm của đa giác đó thì OA1 = OA2 = … = OAn \( \Rightarrow \) SA1 = SA2 = … = SAn \( \Rightarrow \) Hình chóp S.A1A2...An là hình chóp đều LT5 Video hướng dẫn giải Cho hình chóp tam giác đều S.ABC, cạnh đáy bằng a, cạnh bên bằng \(a\sqrt {\frac{5}{{12}}} .\) Tính số đo của góc nhị diện [S, BC, A]. Phương pháp giải: Từ một điểm O bất kì thuộc cạnh a của góc nhị diện [P, a, Q], vẽ các tia Ox, Oy tương ứng thuộc (P), (Q) và vuông góc với a. Góc xOy được gọi là một góc phẳng của góc nhị diện [P, a, Q]. Lời giải chi tiết:
Vì hình chóp S.ABC đều, gọi G là hình chiếu của S trên (ABC) nên G là tâm của đáy ABC là tam giác đều do đó G cũng là trọng tâm hay trực tâm của tam giác ABC. Gọi AG cắt BC tại D Ta có \(AG \bot BC,SG \bot BC \Rightarrow BC \bot \left( {SAD} \right);SD \subset \left( {SAD} \right) \Rightarrow BC \bot SD\) \(BC \bot AD\) (G là trực tâm) \( \Rightarrow \left[ {S,BC,A} \right] = \left( {AD,SD} \right) = \widehat {SDA}\) Tam giác ABC đều cạnh a nên \(AD = \frac{{a\sqrt 3 }}{2}\) Mà G là trọng tâm nên \(GD = \frac{1}{3}AD = \frac{{a\sqrt 3 }}{6}\) Xét tam giác SDC vuông tại D có \(\begin{array}{l}S{D^2} + D{C^2} = S{C^2}\\ \Leftrightarrow S{D^2} + {\left( {\frac{a}{2}} \right)^2} = {\left( {a\sqrt {\frac{5}{{12}}} } \right)^2}\\ \Leftrightarrow S{D^2} = \frac{{{a^2}}}{6} \Leftrightarrow SD = \frac{{a\sqrt 6 }}{6}\end{array}\) Xét tam giác SGD vuông tại G có \(\cos \widehat {SGD} = \frac{{GD}}{{SD}} = \frac{{\sqrt 2 }}{2} \Rightarrow \widehat {SGD} = {45^0}\) Vậy số đo của góc nhị diện [S, BC, A] bằng 450. HĐ13 Video hướng dẫn giải Cho hình chóp đều S.A1A2...An. Một mặt phẳng không đi qua S và song song với mặt phẳng đáy, cắt các cạnh SA1, SA2,.... SAn, tương ứng tai B1, B2,..., Bn a) Giải thích vì sao S. B1B2...Bn là một hình chóp đều. b) Gọi H là tâm của đa giác A1A2...An. Chứng minh rằng đường thẳng SH đi qua tâm K của đa giác đều B1B2...Bn, và HK vuông góc với các mặt phẳng (A1A2...An), (B1B2...Bn) Phương pháp giải: - Hình chóp đều là hình chóp có đáy là đa giác đều và các cạnh bên bằng nhau. - Đường thẳng vuông góc với một mặt phẳng thì đường thẳng sẽ vuông góc với mọi mặt phẳng song song với mặt phẳng đó. - Qua một điểm nằm ngoài đường thẳng chỉ có duy nhất 1 đường thẳng vuông góc với một mặt phẳng cho trước. Lời giải chi tiết: a) Vì mặt phẳng không đi qua S và song song với mặt phẳng đáy, cắt các cạnh SA1, SA2,.... SAn, tương ứng tại B1, B2,..., Bn nên theo định lý Talet trong từng tam giác SA1A2, …, SAn-1An thì \(\frac{{S{B_1}}}{{S{A_1}}} = \frac{{S{B_2}}}{{S{A_2}}} = \frac{{{B_1}{B_2}}}{{{A_1}{A_2}}} = ... = \frac{{S{B_n}}}{{S{A_n}}}\) mà S.A1A2...An là hình chóp đều nên S.B1B2...Bn cũng là một hình chóp đều. b) Ta có \(SH \bot \left( {{A_1}{A_2}...{A_n}} \right)\) (H là tâm của đa giác A1A2...An) Mà \(\left( {{A_1}{A_2}...{A_n}} \right)//\left( {{B_1}{B_2}...{B_n}} \right)\) \( \Rightarrow \)\(SH \bot \left( {{B_1}{B_2}...{B_n}} \right)\) Mà \(SK \bot \left( {{B_1}{B_2}...{B_n}} \right)\) (K là tâm của đa giác B1B2...Bn) \( \Rightarrow \) SH trùng SK Vậy đường thẳng SH đi qua tâm K của đa giác đều B1B2...Bn, và HK vuông góc với các mặt phẳng (A1A2...An), (B1B2...Bn) CH2 Video hướng dẫn giải Hình chóp cụt đều có các cạnh bên bằng nhau hay không? Phương pháp giải: Dựa vào kết quả của hoạt động 13 trang 52 Lời giải chi tiết: Hình chóp cụt đều có các cạnh bên bằng nhau vì theo hoạt động 13 có SB1 = SB2 = … = SBn , SA1= SA2=.... = SAn nên B1A1=…= BnAn
Quảng cáo
|