Giải mục 5 trang 45, 46 SGK Toán 11 tập 2 - Chân trời sáng tạoCho \(f\left( x \right)\) và \(g\left( x \right)\) là hai hàm số có đạo hàm tại \({x_0}\). Xét hàm số \(h\left( x \right) = f\left( x \right) + g\left( x \right)\). Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Hoạt động 5 Cho \(f\left( x \right)\) và \(g\left( x \right)\) là hai hàm số có đạo hàm tại \({x_0}\). Xét hàm số \(h\left( x \right) = f\left( x \right) + g\left( x \right)\). Ta có \(\frac{{h\left( x \right) - h\left( {{x_0}} \right)}}{{x - {x_0}}} = \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} + \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\) nên \(h'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{h\left( x \right) - h\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} + \mathop {\lim }\limits_{x \to {x_0}} \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}} = ... + ...\) Chọn biểu thức thích hợp thay cho chỗ chấm để tìm \(h'\left( {{x_0}} \right)\). Phương pháp giải: Sử dụng định nghĩa đạo hàm: \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\). Lời giải chi tiết: Ta có: \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = f'\left( {{x_0}} \right);\mathop {\lim }\limits_{x \to {x_0}} \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}} = g'\left( {{x_0}} \right)\) Vậy \(h'\left( {{x_0}} \right) = f'\left( {{x_0}} \right) + g'\left( {{x_0}} \right)\). Thực hành 6 Tính đạo hàm của các hàm số sau: a) \(y = x{\log _2}x\); b) \(y = {x^3}{e^x}\). Phương pháp giải: Sử dụng công thức \({\left( {u.v} \right)^\prime } = u'v + uv'\). Lời giải chi tiết: a) \(y' = {\left( {x{{\log }_2}x} \right)^\prime } = {\left( x \right)^\prime }{\log _2}x + x{\left( {{{\log }_2}x} \right)^\prime } = {\log _2}x + x.\frac{1}{{x\ln 2}} = {\log _2}x + \frac{1}{{\ln 2}}\). b) \(y' = {\left( {{x^3}{e^x}} \right)^\prime } = {\left( {{x^3}} \right)^\prime }{e^x} + {x^3}{\left( {{e^x}} \right)^\prime } = 3{{\rm{x}}^2}{e^x} + {x^3}{e^x}\)
Quảng cáo
|