Giải mục 2 trang 22, 23, 24 SGK Toán 12 tập 1 - Cánh diều

Đường tiệm cận đứng

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

HĐ2

Trả lời câu hỏi Hoạt động 2 trang 22 SGK Toán 12 Cánh diều

Cho hàm số \(y = f\left( x \right) = \frac{1}{x}\) có đồ thị là đường cong như Hình 12. Tìm \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right),\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right)\)

Phương pháp giải:

Quan sát đồ thị

Lời giải chi tiết:

Ta có: \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) =  - \infty \).

LT2

Trả lời câu hỏi Luyện tập 2 trang 23 SGK Toán 12 Cánh diều

Tìm tiệm cận đứng của đồ thị hàm số \(y = \frac{{{x^2} + 3x}}{{x - 5}}\).

Phương pháp giải:

Đường thẳng \(x = {x_o}\) được gọi là đường tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

\(\mathop {\lim }\limits_{x \to x_o^ - } f\left( x \right) =  + \infty \) ,\(\mathop {\lim }\limits_{x \to x_o^ - } f\left( x \right) =  - \infty \),\(\mathop {\lim }\limits_{x \to x_o^ + } f\left( x \right) =  + \infty \),\(\mathop {\lim }\limits_{x \to x_o^ + } f\left( x \right) =  - \infty \).

Lời giải chi tiết:

Tập xác định \(D = \mathbb{R}\backslash \left\{ 5 \right\}\).

Ta có: \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {5^ - }} y = \mathop {\lim }\limits_{x \to {5^ - }} \frac{{{x^2} + 3x}}{{x - 5}} =  - \infty \\\mathop {\lim }\limits_{x \to {5^ + }} y = \mathop {\lim }\limits_{x \to {5^ + }} \frac{{{x^2} + 3x}}{{x - 5}} =  + \infty \end{array} \right.\)

Vậy đường thẳng \(x = 5\) là tiệm cận đứng của đồ thị hàm số đã cho

  • Giải bài tập 1 trang 27 SGK Toán 12 tập 1 - Cánh diều

    Tiệm cận đứng của đồ thị hàm số \(y = \frac{{x + 2}}{{x + 1}}\) là: A. \(x = - 1\). B. \(x = - 2\). C. \(x = 1\). D. \(x = 2\).

  • Giải bài tập 2 trang 27 SGK Toán 12 tập 1 - Cánh diều

    Tiệm cận xiên của đồ thị hàm số (y = frac{{{x^2} + 3x + 5}}{{x + 2}}) là: A. (y = x). B. (y = x + 1). C. (y = x + 2). D. (y = x + 3).

  • Giải bài tập 3 trang 27 SGK Toán 12 tập 1 - Cánh diều

    Đồ thị hàm số ở Hình 18a, Hình 18b đều có đường tiệm cận ngang là đường thẳng màu đỏ. Hỏi đó là đồ thị của hàm số nào trong các hàm số sau đây? a) \(y = \frac{{{x^2} + 2x - 1}}{{{x^2} + 1}}\). b) \(y = \frac{{2{x^2} + x + 1}}{{x - 1}}\) c) \(y = \frac{{2{x^2} - 2}}{{{x^2} + 2}}\)

  • Giải bài tập 4 trang 27 SGK Toán 12 tập 1 - Cánh diều

    Tìm tiệm cận đứng, ngang, xiên (nếu có) của đồ thị mỗi hàm số sau: a) \(y = \frac{x}{{2 - x}}\) b) \(y = \frac{{2{x^2} - 3x + 2}}{{x - 1}}\) c) \(y = x - 3 + \frac{1}{{{x^2}}}\)

  • Giải bài tập 5 trang 27 SGK Toán 12 tập 1 - Cánh diều

    Số lượng sản phẩm bán được cho một công ty trong x (tháng) được tính theo công thức \(S\left( x \right) = 200\left( {5 - \frac{9}{{2 + x}}} \right)\) trong đó \(x \ge 1\). a) Xem \(y = S\left( x \right)\) là một hàm số xác định trên nửa khoảng \([1; + \infty )\), hãy tìm tiệm cận ngang của đồ thị hàm số đó. b) Nêu nhận xét về số lượng sản phẩm bán được của công ty đó trong x (tháng) khi x đủ lớn.

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close