Giải mục 1 trang 94, 95 SGK Toán 8 tập 1 - Cánh diều

Thực hiện các hoạt động sau: a) Vẽ và cắt giấy để có 4 hình tam giác vuông như nhau với độ dài cạnh huyền là a, độ dài hai cạnh góc vuông là b và c, trong đó a, b, c có cùng đơn vị độ dài (Hình 2)

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

HĐ1

Video hướng dẫn giải

Thực hiện các hoạt động sau:

a) Vẽ và cắt giấy để có 4 hình tam giác vuông như nhau với độ dài cạnh huyền là a, độ dài hai cạnh góc vuông là b và c, trong đó a, b, c có cùng đơn vị độ dài (Hình 2)

b) Vẽ hình vuông ABCD có cạnh là b + c như Hình 3. Đặt hình 4 tam giác vuông đã cắt ở câu a lên hình vuông ABCD vừa vẽ, phần chưa bi che đi là hình vuông MNPQ với đọ dài cạnh a (Hình 4)

c) Gọi S1 là diện tích của hình vuông ABCD. Gọi S2 là tổng diện tích của hình vuông MNPQ và diện tích của 4 tam giác vuông AQM, BMN, CNP, DPQ. So sánh S1 và S2.

d) Dựa vào kết quả ở câu c, dự đoán mỗi liên hệ giữa a2 và b2 + c2.

Phương pháp giải:

Quan sát hình 2,3,4

Lời giải chi tiết:

c, Dựa vào hình 4 ta thấy \({S_1} = {S_2}\).

d,

\(\begin{array}{l}{S_1} = (b + c).(b + c) = {b^2} + 2bc + {c^2}\\{S_2} = {a^2} + 4.\dfrac{1}{2}.b.c = {a^2} + 2bc\end{array}\)

vì \({S_1} = {S_2}\) nên \({b^2} + 2bc + {c^2} = {a^2} + 2bc\) suy ra: \({b^2} + {c^2} = {a^2}\)

LT 1

Video hướng dẫn giải

Tính độ dài đường chéo của hình vuông có độ dài cạnh là a.

Phương pháp giải:

Áp dụng định lí Pythagore

Lời giải chi tiết:

Độ dài đường chéo của hình vuông có độ dài cạnh a là.

\(\sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close