Giải bài tập 9 trang 27 SGK Toán 12 tập 2 - Cánh diềuỞ nhiệt độ \(37^\circ C\), một phản ứng hóa học từ chất đầu A, chuyển hóa thành sản phẩm B theo phương trình: \(A \to B\). Giả sử y(x) là nồng độ chất A (đơn vị mol \({L^{ - 1}}\)) tại thời gian x (giây), y(x) > 0 với \(x \ge 0\), thỏa mãn hệ thức \(y'(x) = - {7.10^{ - 4}}y(x)\) với \(x \ge 0\). Biết rằng tại x = 0, nồng độ (đầu) của A là 0,05 mol \({L^{ - 1}}\). a) Xét hàm số \(f(x) = \ln y(x)\) với \(x \ge 0\). Hãy tính f’(x), từ đó hãy tìm hàm số f(x) b) Giả sử tính nồng độ trung bình chất Quảng cáo
Đề bài Ở nhiệt độ \(37^\circ C\), một phản ứng hóa học từ chất đầu A, chuyển hóa thành sản phẩm B theo phương trình: \(A \to B\). Giả sử y(x) là nồng độ chất A (đơn vị mol \({L^{ - 1}}\)) tại thời gian x (giây), y(x) > 0 với \(x \ge 0\), thỏa mãn hệ thức \(y'(x) = - {7.10^{ - 4}}y(x)\) với \(x \ge 0\). Biết rằng tại x = 0, nồng độ (đầu) của A là 0,05 mol \({L^{ - 1}}\). a) Xét hàm số \(f(x) = \ln y(x)\) với \(x \ge 0\). Hãy tính f’(x), từ đó hãy tìm hàm số f(x) b) Giả sử tính nồng độ trung bình chất A (đơn vị mol \({L^{ - 1}}\)) từ thời điểm a(giây) đến thời điểm b(giây) với 0 < a < b theo công thức \(\frac{1}{{b - a}}\int\limits_a^b {y(x)dx} \). Xác định nồng độ trung bình của chất A từ thời điểm 15 giây đến thời điểm 30 giây. Phương pháp giải - Xem chi tiết a) Biến đổi hàm số cho thích hợp b) Xác định hàm số y(x) rồi tính tích phân Lời giải chi tiết a) \(f(x) = \ln y(x) \to f'(x) = \frac{{y'(x)}}{{y(x)}} = - {7.10^{ - 4}} \to f(x) = - {7.10^{ - 4}}x\) b) \(f(x) = - {7.10^{ - 4}}x \to \ln y(x) = - {7.10^{ - 4}}x \Leftrightarrow y(x) = {e^{ - {{7.10}^{ - 4}}x}}\) Nồng độ trung bình của chất A từ thời điểm 15 giây đến thời điểm 30 giây: \(\frac{1}{{30 - 15}}\int\limits_{15}^{30} {y(x)dx} = \frac{1}{{15}}\int\limits_{15}^{30} {{e^{ - {{7.10}^{ - 4}}x}}dx} = \frac{1}{{15}}.\left. {\frac{{{e^{ - {{7.10}^{ - 4}}x}}}}{{ - {{7.10}^{ - 4}}}}} \right|_{15}^{30} = 0,98\) (\({L^{ - 1}}\))
Quảng cáo
|