Giải bài tập 8 trang 64 SGK Toán 12 tập 2 - Cánh diều

Cho hai mặt phẳng \(({P_1}):4x - y - z + 1 = 0\), \(({P_2}):8x - 2y - 2x + 1 = 0\) a) Chứng minh rằng \(({P_1})//({P_2})\) b) Tính khoảng cách giữa hai mặt phẳng song song \(({P_1}),({P_2})\)

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Quảng cáo

Đề bài

Cho hai mặt phẳng \(({P_1}):4x - y - z + 1 = 0\), \(({P_2}):8x - 2y - 2x + 1 = 0\)

a) Chứng minh rằng \(({P_1})//({P_2})\)

b) Tính khoảng cách giữa hai mặt phẳng song song \(({P_1}),({P_2})\)

Phương pháp giải - Xem chi tiết

a) Chứng minh vecto pháp tuyến của hai mặt phẳng song song với nhau

b) Khoảng cách giữa hai mặt phẳng song song \(({P_1}),({P_2})\) là khoảng cách giữa 1 điểm \( \in ({P_1})\) đến \(({P_2})\)

Lời giải chi tiết

a) Ta có: \(\overrightarrow {{n_1}}  = (4; - 1; - 1);\overrightarrow {{n_2}}  = (8; - 2; - 2) = 2\overrightarrow {{n_1}} \) suy ra \(\overrightarrow {{n_1}} \) và \(\overrightarrow {{n_2}} \) cùng phương

Do đó: \(({P_1})//({P_2})\)

b) Chọn điểm \(A(0;1;0) \in ({P_1})\), khoảng cách giữa hai mặt phẳng song song \(({P_1}),({P_2})\) là khoảng cách từ A  đến \(({P_2})\)

\(d(A;({P_2})) = \frac{{\left| { - 2.1 + 1} \right|}}{{\sqrt {{8^2} + {{( - 2)}^2} + {{( - 2)}^2}} }} = \frac{{\sqrt 2 }}{{12}}\)

Vậy khoảng cách giữa hai mặt phẳng song song \(({P_1}),({P_2})\) là \(\frac{{\sqrt 2 }}{{12}}\)

  • Giải bài tập 9 trang 64 SGK Toán 12 tập 2 - Cánh diều

    a) Cho hai mặt phẳng \(({P_1}):x + 2y + 3z + 4 = 0,({P_2}):x + y - z + 5 = 0\). Chứng minh rằng \(({P_1}) \bot ({P_2})\) b) Cho mặt phẳng \((P):x - 2y - 2z + 1 = 0\) và điểm M(1;1;-6). Tính khoảng cách từ điểm M đến mặt phẳng (P)

  • Giải bài tập 10 trang 64 SGK Toán 12 tập 2 - Cánh diều

    Trong không gian với hệ tọa độ Oxyz, cho hình chóp S.OBCD có đáy là hình chữ nhật và các điểm O(0;0;0), B(2;0;0), D(0;3;0), S(0;0;4) (hình 19) a) Tìm tọa độ điểm C b) Viết phương trình mặt phẳng (SBD) c) Tính khoảng cách từ điểm C đến mặt phẳng (SBD)

  • Giải bài tập 11 trang 64 SGK Toán 12 tập 2 - Cánh diều

    Hình 20 minh họa hình ảnh một tòa nhà trong không gian với hệ tọa độ Oxyz (đơn vị trên mỗi trục tọa độ là mét). Biết A(50;0;0), D(0;20;0), B(4k;3k;2k) với k > 0 và mặt phẳng (CBEF) có phương trình z = 3 a) Tìm tọa độ điểm B b) Lập phương trình mặt phẳng (AOBC) c) Lập phương trình mặt phẳng (DOBE) d) Chỉ ra một vecto pháp tuyến của mỗi mặt phẳng (AOBC) và (DOBE)

  • Giải bài tập 12 trang 64 SGK Toán 12 tập 2 - Cánh diều

    Hình 21 minh hoạt một khu nhà đang xây dựng được gắn hệ trục tọa độ Oxyz (đơn vị trên các trục là mét). Mỗi cột bê tông có dạng hình lăng trụ tứ giác đều và tâm của mặt đáy trên lần lượt các điểm A(2;1;3), B(4;3;3), C(6;3;2,5), D(4;0;2,8) a) Viết phương trình mặt phẳng (ABC) b) Bốn điểm A, B, C, D có đồng phẳng không?

  • Giải bài tập 7 trang 63 SGK Toán 12 tập 2 - Cánh diều

    Lập phương trình mặt phẳng theo đoạn chắn của mặt phẳng (P), biết (P) đi qua ba điểm A(5;0;0), B(0;3;0), C(0;0;6)

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close