Giải bài tập 5 trang 61 SGK Toán 12 tập 2 - Cánh diều

Lập phương trình mặt phẳng (P) trong mỗi trường hợp sau: a) Điểm I(3;-4;1) và vuông góc với trục Ox b) Điểm K(-2;4;-1) và song song với mặt phẳng (Ozx) c) Điểm K(-2;4;-1) và song song với mặt phẳng (Q): 3x + 7y + 10z + 1 = 0

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Quảng cáo

Đề bài

Lập phương trình mặt phẳng (P) trong mỗi trường hợp sau:

a) Điểm I(3; -4; 1) và vuông góc với trục Ox.

b) Điểm K(-2; 4; -1) và song song với mặt phẳng (Ozx).

c) Điểm K(-2; 4; -1) và song song với mặt phẳng (Q): 3x + 7y + 10z + 1 = 0.

Phương pháp giải - Xem chi tiết

B1: Tìm vecto pháp tuyến của mặt phẳng (P):

a) \((P) \bot Ox\) nên một vecto pháp tuyến của mặt phẳng (P) là vecto đơn vị của trục Ox.

b) \((P)//(Oxz)\) nên một vecto pháp tuyến của (P) là vecto đơn vị của trục Oy.

c) \((P)//(Q)\) nên một vecto pháp tuyến của (P) là vecto pháp tuyến của (Q).

B2: Lập phương trình mặt phẳng (P): Mặt phẳng (P) đi qua điểm \(I({x_0};{y_0};{z_0})\) và nhận \(\overrightarrow n  = (A;B;C)\) làm vecto pháp tuyến có phương trình là \(A(x - {x_0}) + B(y - {y_0}) + C(z - {z_0}) = 0\).

Lời giải chi tiết

a) \((P) \bot Ox \Rightarrow {\overrightarrow n _{(P)}} = (1;0;0)\).

Phương trình mặt phẳng (P) là: \(x - 3 = 0\).

b) \((P)//(Oxz) \Rightarrow (P) \bot Oy \Rightarrow {\overrightarrow n _{(P)}} = (0;1;0)\).

Phương trình mặt phẳng (P) là: \(y - 4 = 0\).

c) \((P)//(Q) \Rightarrow {\overrightarrow n _{(P)}} = {\overrightarrow n _{(Q)}} = (3;7;10)\).

Phương trình mặt phẳng (P) là:

\(3(x + 2) + 7(y - 4) + 10(z + 1) = 0 \Leftrightarrow 3x + 7y + 10z - 12 = 0\).

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close