Giải bài tập 4.17 trang 21 SGK Toán 12 tập 2 - Cùng khám phá

Hiệu suất của tim là lưu lượng máu được bơm bởi tim trên một đơn vị thời gian (lưu lượng máu chảy vào động mạch chủ). Để đo hiệu suất của tim, người ta bơm \(A\) (mg) chất chỉ thị màu vào tâm nhĩ phải, chảy qua tim rồi vào động mạch chủ và đo nồng độ chất chỉ thị màu còn lại ở tim đến thời điểm \(T(s)\) khi chất chỉ thị màu tan sạch. Gọi \(c(t)\) là nồng độ \(({\rm{mg/l}})\) chất chỉ thị màu tại thời điểm \(t\) (s) thì hiệu suất của tim được xác định bởi: \(F = \frac{A}{{\int_0^T c (t)dt}}{\mk

Quảng cáo

Đề bài

Hiệu suất của tim là lưu lượng máu được bơm bởi tim trên một đơn vị thời gian (lưu lượng máu chảy vào động mạch chủ). Để đo hiệu suất của tim, người ta bơm \(A\) (mg) chất chỉ thị màu vào tâm nhĩ phải, chảy qua tim rồi vào động mạch chủ và đo nồng độ chất chỉ thị màu còn lại ở tim đến thời điểm \(T(s)\) khi chất chỉ thị màu tan sạch. Gọi \(c(t)\) là nồng độ \(({\rm{mg/l}})\) chất chỉ thị màu tại thời điểm \(t\) (s) thì hiệu suất của tim được xác định bởi:

\(F = \frac{A}{{\int_0^T c (t)dt}}{\mkern 1mu} ({\rm{l/s}})\)

Tính hiệu suất của tim khi bơm 8 mg chất chỉ thị màu vào tâm nhĩ phải, biết rằng \(c(t) = \frac{1}{4}t(12 - t)\) với \(0 \le t \le 12\).

Phương pháp giải - Xem chi tiết

- Tính tích phân \(\int_0^{12} c (t){\mkern 1mu} dt\) với hàm \(c(t) = \frac{1}{4}t(12 - t)\).

- Thay kết quả vào công thức \(F = \frac{A}{{\int_0^T c (t){\mkern 1mu} dt}}\).

Lời giải chi tiết

- Hàm nồng độ chất chỉ thị màu theo thời gian \(c(t)\) được cho bởi:

\(c(t) = \frac{1}{4}t(12 - t)\)

- Tính tích phân \(\int_0^{12} c (t){\mkern 1mu} dt\):

\(\int_0^{12} {\frac{1}{4}} t(12 - t){\mkern 1mu} dt = \frac{1}{4}\int_0^{12} t (12 - t){\mkern 1mu} dt\)

- Ta phân tích biểu thức \(t(12 - t)\):

\(t(12 - t) = 12t - {t^2}\)

- Khi đó, tích phân trở thành:

\(\frac{1}{4}\int_0^{12} {(12t - {t^2})} {\mkern 1mu} dt = \frac{1}{4}\left( {\int_0^{12} 1 2t{\mkern 1mu} dt - \int_0^{12} {{t^2}} {\mkern 1mu} dt} \right)\)

- Tính từng tích phân:

\(\int_0^{12} 1 2t{\mkern 1mu} dt = 12 \times \frac{{{t^2}}}{2}|_0^{12} = 12 \times \frac{{{{12}^2}}}{2} = 12 \times 72 = 864\)

\(\int_0^{12} {{t^2}} {\mkern 1mu} dt = \frac{{{t^3}}}{3}|_0^{12} = \frac{{{{12}^3}}}{3} = \frac{{1728}}{3} = 576\)

- Vậy, ta có:

\(\frac{1}{4}\left( {864 - 576} \right) = \frac{1}{4} \times 288 = 72\)

- Thay kết quả vào công thức tính hiệu suất \(F\):

\(F = \frac{A}{{\int_0^{12} c (t){\mkern 1mu} dt}} = \frac{8}{{72}} = \frac{1}{9}{\mkern 1mu} ({\rm{l/s}})\).

  • Giải bài tập 4.18 trang 21 SGK Toán 12 tập 2 - Cùng khám phá

    Ở \({45^^\circ }C\), phản ứng hóa học phân hủy \({N_2}{O_5}\) xảy ra theo phương trình: \({N_2}{O_5} \to 2N{O_2} + \frac{1}{2}{O_2}\) với nồng độ \(c(t)\) (mol/L) của \({N_2}{O_5}\) \((c(t) > 0)\) tại thời điểm \(t\) giây (t \( \ge 0\)) thỏa mãn \(c'(t) = - 0,0005c(t)\). Biết khi \(t = 0\), nồng độ ban đầu của \({N_2}{O_5}\) là 0,05 mol/L. a) Xét hàm số \(y(t) = \ln c(t)\) với \(t \ge 0\). Tính \(y'(t)\), từ đó tìm \(y(t)\). b) Biết rằng nồng độ trung bình của \({N_2}{O_5}\) (mol/L) từ thờ

  • Giải bài tập 4.16 trang 20 SGK Toán 12 tập 2 - Cùng khám phá

    Một lò xo có chiều dài tự nhiên là \({l_0} = 10{\mkern 1mu} {\rm{cm}}\)(Hình 4.9a). Để kéo giãn lò xo \(x{\mkern 1mu} ({\rm{m}})\) cần một lực có độ lớn \(f(x) = kx{\mkern 1mu} ({\rm{N}})\), trong đó \(k\) là độ cứng của lò xo và có giá trị không đổi. (Hình 4.9b). a) Tìm \(k\), biết dưới tác dụng của một lực 40 N, lò xo bị giãn và chiều dài của lò xo khi ấy là \({l_1} = 15{\mkern 1mu} {\rm{cm}}\). b) Nếu một lực có độ lớn \(f(x){\mkern 1mu} ({\rm{N}})\) làm biến dạng lò xo từ độ giãn \(a{\mke

  • Giải bài tập 4.15 trang 20 SGK Toán 12 tập 2 - Cùng khám phá

    Đường gấp khúc ABD trong Hình 4.8 là đồ thị vận tốc \(v(t)\) của một vật (t = 0 là thời điểm vật bắt đầu chuyển động). Trong khoảng thời gian mà \(v < 0\)thì vật chuyển động ngược chiều với khoảng thời gian mà \(v > 0\). a) Viết công thức của hàm số \(v(t)\) với \(t \in [0;9]\). b) Biết rằng quãng đường vật đi chuyển với vận tốc \(v = v(t)\) từ thời điểm \(t = a\) đến thời điểm \(t = b\) là \(s = \int_a^b | v(t)|{\mkern 1mu} dt\), tính quãng đường vật di chuyển được trong 9 giây kể từ khi vật

  • Giải bài tập 4.14 trang 20 SGK Toán 12 tập 2 - Cùng khám phá

    Một quả bóng được ném lên từ độ cao \(1,5m\) với vận tốc ban đầu \(24m/s\). Biết gia tốc của quả bóng là \(a = - 9,8m/{s^2}\). a) Tính vận tốc của quả bóng tại thời điểm 1 giây sau khi được ném lên. b) Tính quãng đường quả bóng đi được từ lúc ném lên đến khi chạm đất lần đầu.

  • Giải bài tập 4.13 trang 20 SGK Toán 12 tập 2 - Cùng khám phá

    Tính các tích phân sau: a) \(\int_{ - 1}^2 x (x + 1)dx\); b) \(\int_0^{\frac{\pi }{2}} {{{\cos }^2}} \frac{x}{2}dx\); c) \(\int_1^2 {{2^{1 - 3x}}} dx\); d) \(\int_0^{\frac{\pi }{4}} {{{\tan }^2}} xdx\); e) \(\int_1^4 {\left( {{e^{2x + 1}} - 3x\sqrt x } \right)} dx\); g) \(\int_1^4 | 5 - 3x|dx\).

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close