Giải bài tập 2 trang 26 SGK Toán 12 tập 2 - Cánh diều

Tích phân (intlimits_{frac{pi }{7}}^{frac{pi }{5}} {sin xdx} ) có giá trị bằng:

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Quảng cáo

Đề bài

Tích phân \(\int\limits_{\frac{\pi }{7}}^{\frac{\pi }{5}} {\sin xdx} \) có giá trị bằng:

A. $\sin \frac{\pi}{5} - \sin \frac{\pi}{7}$.

B. $\sin \frac{\pi}{7} - \sin \frac{\pi}{5}$.

C. $\cos \frac{\pi}{5} - \cos \frac{\pi}{7}$.

D. $\cos \frac{\pi}{7} - \cos \frac{\pi}{5}$.

Phương pháp giải - Xem chi tiết

Cho hàm số f(x) liên tục trên đoạn [a;b]. Giả sử F(x) là nguyên hàm của f(x) trên đoạn [a;b]. Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu là \(\int\limits_a^b {f(x)} dx\).

Lời giải chi tiết

\(\int\limits_{\frac{\pi }{7}}^{\frac{\pi }{5}} {\sin xdx}  = \left. { - \cos x} \right|_{\frac{\pi }{7}}^{\frac{\pi }{5}} = \cos \frac{\pi }{7} - \cos \frac{\pi }{5}\).

Chọn D

  • Giải bài tập 3 trang 26 SGK Toán 12 tập 2 - Cánh diều

    Tích phân \(I = \int\limits_0^1 {\frac{{{3^x}}}{2}dx} \) có giá trị bằng: A. \( - \frac{1}{{\ln 3}}\) B. \(\frac{1}{{\ln 3}}\) C. -1 D. 1

  • Giải bài tập 4 trang 26 SGK Toán 12 tập 2 - Cánh diều

    Cho (intlimits_{ - 2}^3 {f(x)dx} = - 10), (F(x)) là một nguyên hàm của hàm số f(x) trên đoạn [-2;3], F(3) = -8. Tính F(-2)

  • Giải bài tập 5 trang 27 SGK Toán 12 tập 2 - Cánh diều

    Cho (intlimits_0^4 {f(x)dx} = 4,intlimits_3^4 {f(x)dx} = 6). Tính (intlimits_0^3 {f(x)dx} )

  • Giải bài tập 6 trang 27 SGK Toán 12 tập 2 - Cánh diều

    Tính: a) (intlimits_0^1 {({x^6} - 4{x^3} + 3{x^2})dx} ) b) (intlimits_1^2 {frac{1}{{{x^4}}}dx} ) c) (intlimits_1^4 {frac{1}{{xsqrt x }}dx} ) d) (intlimits_0^{frac{pi }{2}} {(4sin x + 3cos x)dx} ) e) (intlimits_{frac{pi }{4}}^{frac{pi }{2}} {{{cot }^2}xdx} ) g) (intlimits_0^{frac{pi }{4}} {{{tan }^2}xdx} ) h) (intlimits_{ - 1}^0 {{e^{ - x}}dx} ) i) (intlimits_{ - 2}^{ - 1} {{e^{x + 2}}dx} ) k) (intlimits_0^1 {({{3.4}^x} - 5{e^{ - x}})dx}

  • Giải bài tập 7 trang 27 SGK Toán 12 tập 2 - Cánh diều

    a) Cho một vật chuyển động với vận tốc y = v(t) (m/s). Cho 0 < a < b và v(t) > 0 với mọi (t in [a;b]). Hãy giải thích vì sao (intlimits_a^b {v(t)dt} ) biểu thị quãng đường mà vật đi được trong khoảng thời gian từ a đến b (a,b tính theo giây) b) Áp dụng công thức ở câu a) để giải bài toán sau: một vật chuyển động với vận tốc v(t) = 2 – sint (m/s). Tính quãng đường vật di chuyển trong khoảng thời gian từ thời điểm t = 0 (s) đến thời điểm (t = frac{{3pi }}{4}) (s)

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close