Giải bài tập 15 trang 83 SGK Toán 12 tập 1 - Cánh diều

Một chiếc máy được đặt trên một giá đỡ ba chân với điểm đặt E(0;0;6) và các điểm tiếp xúc với mặt đất của ba chân lần lượt là \({A_1}(0;1;0)\), \({A_2}(\frac{{\sqrt 3 }}{2}; - \frac{1}{2};0)\), \({A_3}( - \frac{{\sqrt 3 }}{2}; - \frac{1}{2};0)\) (Hình 40). Biết rằng trọng lượng của chiếc máy là 300N. Tìm tọa độ của các lực tác dụng lên giá đỡ \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \)

Quảng cáo

Đề bài

 

 

Một chiếc máy được đặt trên một giá đỡ ba chân với điểm đặt E(0;0;6) và các điểm tiếp xúc với mặt đất của ba chân lần lượt là \({A_1}(0;1;0)\), \({A_2}(\frac{{\sqrt 3 }}{2}; - \frac{1}{2};0)\), \({A_3}( - \frac{{\sqrt 3 }}{2}; - \frac{1}{2};0)\) (Hình 40). Biết rằng trọng lượng của chiếc máy là 300N. Tìm tọa độ của các lực tác dụng lên giá đỡ \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \)

 

Phương pháp giải - Xem chi tiết

Vì đèn cân bằng nên trọng lực của đèn sẽ phân bố đều trên các chân của giá đỡ. Từ tọa độ các điểm đã cho, ta tìm được cái mối liên hệ với vecto lực và tìm được tọa độ của các vecto lực

 

Lời giải chi tiết

Ta có: \(\overrightarrow {E{A_1}}  = (0;1; - 6);\overrightarrow {E{A_2}}  = (\frac{{\sqrt 3 }}{2}; - \frac{1}{2}; - 6);\overrightarrow {E{A_3}}  = ( - \frac{{\sqrt 3 }}{2}; - \frac{1}{2}; - 6) \Rightarrow E{A_1} = E{A_2} = E{A_3} = \sqrt {37} \)

\(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right|\) vì đèn cân bằng và trọng lực của đèn tác dụng đều lên 3 chân của giá đỡ

Do đó:

\(\overrightarrow {{F_1}}  = k\overrightarrow {E{A_1}}  = (0;k; - 6k)\)

\(\overrightarrow {{F_2}}  = k\overrightarrow {E{A_2}}  = (\frac{{\sqrt 3 }}{2}k; - \frac{1}{2}k; - 6k)\)

\(\overrightarrow {{F_3}}  = k\overrightarrow {E{A_3}}  = ( - \frac{{\sqrt 3 }}{2}k; - \frac{1}{2}k; - 6k)\)

\( \Rightarrow \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = (0;0; - 18k)\)

Mà \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \overrightarrow P  = (0;0; - 300) \Rightarrow  - 18k = 300 \Leftrightarrow k = \frac{{50}}{3}\)

Vậy \(\overrightarrow {{F_1}}  = (0;\frac{{50}}{3}; - 100)\); \(\overrightarrow {{F_2}}  = (\frac{{25\sqrt 3 }}{3}; - \frac{{50}}{6}; - 100)\);\(\overrightarrow {{F_3}}  = ( - \frac{{25\sqrt 3 }}{3}; - \frac{{50}}{6}; - 100)\)

 
  • Giải bài tập 14 trang 83 SGK Toán 12 tập 1 - Cánh diều

    Trong không gian với hệ tọa độ Oxyz, cho A(2;0;-3), B(0;-4;5) và C(-1;2;0). a) Chứng minh rằng ba điểm A, B, C không thằng hàng b) Tìm tọa độ của điểm D sao cho tứ giác ABCD là hình bình hành c) Tìm tọa độ trọng tâm G của tam giác ABC d) Tính chu vi của tam giác ABC e) Tính (cos overrightarrow {BAC} )

  • Giải bài tập 13 trang 83 SGK Toán 12 tập 1 - Cánh diều

    Xét hệ tọa độ Oxyz gắn với hình lập phương ABCD.A’B’C’D’ như Hình 39, đơn vị của mỗi trục bằng độ dài cạnh hình lập phương. Biết A(0;0;0), B(1;0;0), D(0;1;0), A’(0;0;1). a) Xác định tọa độ các đỉnh còn lại của hình lập phương ABCD.A’B’C’D’ b) Xác định tọa độ trọng tâm G của tam giác A’BD c) Xác định tọa độ các vecto \(\overrightarrow {OG} \) và \(\overrightarrow {OC'} \). Chứng minh rằng ba điểm O, G, C’ thẳng hàng và \(OG = \frac{1}{3}OC\)

  • Giải bài tập 12 trang 83 SGK Toán 12 tập 1 - Cánh diều

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AA’ và CC’. Tính góc giữa hai vecto \(\overrightarrow {MN} \) và \(\overrightarrow {AD'} \)

  • Giải bài tập 11 trang 83 SGK Toán 12 tập 1 - Cánh diều

    Cho hai vecto \(\overrightarrow u = (1; - 2;3),\overrightarrow v = (3;4; - 5)\). Hãy chỉ ra tọa độ của một vecto \(\overrightarrow w \) khác \(\overrightarrow 0 \) vuông góc với cả hai vecto \(\overrightarrow u \) và \(\overrightarrow v \)

  • Giải bài tập 10 trang 82 SGK Toán 12 tập 1 - Cánh diều

    Cho tam giác MNP có M(0;2;1), N(-1;-2;3) và P(1;3;2). Trọng tâm của tam giác MNP có tọa độ là: A. (0;1;2) B. (0;3;6) C. (0;-3;-6) D. (0;-1;-2)

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close