Giải bài 9.44 trang 111 SGK Toán 8 tập 2 - Kết nối tri thứcCho tam giác ABC vuông tại A có AB=5cm, AC=4cm. Quảng cáo
Đề bài Cho tam giác ABC vuông tại A có AB=5cm, AC=4cm. Gọi AH, HD lần lượt là các đường cao kẻ từ đỉnh A của tam giác ABC và đỉnh H của tam giác HAB b) Tính độ dài các đoạn thẳng HA, HB, HC, HD Video hướng dẫn giải Phương pháp giải - Xem chi tiết a) Chứng minh tam giác vuông HDA (vuông tại D) và tam giác vuông AHC (vuông tại H) có: \(\widehat {DHA} = \widehat {HAC}\) b) Áp dụng định lý Pythagore trong tam giác vuông để tính HA, HB, HC, HD Lời giải chi tiết a) Có AB ⊥ AC, HD ⊥ AB Suy ra HD // AC Suy ra \(\widehat {DHA} = \widehat {HAC}\) - Xét tam giác vuông HDA (vuông tại D) và tam giác vuông AHC (vuông tại H) có: \(\widehat {DHA} = \widehat {HAC}\) Suy ra ΔHDA ∽ ΔAHC b) Xét tam giác ABC có: \(A{B^2} + A{C^2} = B{C^2}\) mà AB=5cm, AC=4cm Suy ra \(BC = \sqrt {41} \) - Có AH.BC=AB.AC Suy ra \(AH = \frac{{20\sqrt {41} }}{{41}}\) Suy ra \(H{B^2} = A{B^2} - A{H^2}\) (áp dụng định lý Pythagore trong tam giác vuông BHA) Suy ra \(HB = \frac{{25\sqrt {41} }}{{41}}\) Suy ra \(HC = \frac{{16\sqrt {41} }}{{41}}\) - Xét tam giác vuông BDH và tam giác vuông BAC có: HD // AC Suy ra ΔBDH ∽ ΔBAC Suy ra \(\frac{{BH}}{{BC}} = \frac{{DH}}{{AC}}\) Suy ra \(H{\rm{D}} = \frac{{100}}{{41}}\)
Quảng cáo
|