Giải bài 9.3 trang 82 SGK Toán 8 tập 2 - Kết nối tri thức

Trong hình 9.9, ABC là tam giác không cân

Quảng cáo

Đề bài

Trong hình 9.9, ABC là tam giác không cân; M, N, P lần lượt là trung điểm của BC, CA, AB. Hãy tìm trong hình năm tam giác khác nhau mà chúng đôi một đồng dạng với nhau. Giải thích vì sao chúng đồng dạng 

 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Dựa vào định lí để chứng minh hai tam giác đồng dạng

Lời giải chi tiết

- Có AP = BP, NA = NC

=> NP // BC (P ∈ AB, N ∈ AC)

=> ΔABC \(\backsim\) ΔAPN 

- Có AP = BP, MB = MC

=> MP // AC (P ∈ AB, M ∈ BC)

=> ΔABC \(\backsim\) ΔPBM
- Có NA = NC, MB = MC

=> MN // AB (N ∈ AC,M ∈ BC)

=> ΔABC \(\backsim\) ΔNMC

- Có ΔABC \(\backsim\) ΔAPN và ΔABC \(\backsim\) ΔPBM => ΔAPN \(\backsim\) ΔPBM

- Có ΔABC \(\backsim\) ΔNMC và ΔABC \(\backsim\) ΔPBM => ΔNMC \(\backsim\) ΔPBM 

- Có ΔAPN \(\backsim\) ΔPBM và ΔNMC \(\backsim\) ΔPBM => ΔAPN \(\backsim\) ΔNMC

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close