Giải bài 9.24 trang 56 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

Cho hình thang ABCD (AB//CD). Biết rằng \(AB = 2cm,BD = 4cm,CD = 8cm.\) Chứng minh rằng \(BC = 2AD\)

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên

Quảng cáo

Đề bài

Cho hình thang ABCD (AB//CD). Biết rằng \(AB = 2cm,BD = 4cm,CD = 8cm.\) Chứng minh rằng \(BC = 2AD\)

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về định lý (trường hợp đồng dạng cạnh – góc – cạnh): Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và góc tạo bởi các cặp cạnh đó bằng nhau thì hai tam giác đó đồng dạng với nhau.

Lời giải chi tiết

Vì AB//CD nên \(\widehat {ABD} = \widehat {BDC}\) (hai góc so le trong)

Tam giác ABD và tam giác BDC có:

\(\frac{{AB}}{{BD}} = \frac{{BD}}{{DC}}\left( {do\frac{2}{4} = \frac{4}{8}} \right)\), \(\widehat {ABD} = \widehat {BDC}\) (cmt)

Do đó, $\Delta ABD\backsim \Delta BDC\left( c-g-c \right)$

Suy ra: \(\frac{{AB}}{{BD}} = \frac{{BD}}{{DC}} = \frac{{AD}}{{BC}} = \frac{1}{2}\). Do đó, \(BC = 2AD\)

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close