Giải bài 6.6 trang 6 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

Dùng tính chất cơ bản của phân thức, chứng minh

Quảng cáo

Đề bài

Dùng tính chất cơ bản của phân thức, chứng minh \(\frac{{{x^4} - 1}}{{x - 1}} = {x^3} + {x^2} + x + 1\)

Phương pháp giải - Xem chi tiết

+ Sử dụng tính chất cơ bản của phân thức để chứng minh: Nếu chia cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức 0 thì được một phân thức mới bằng phân thức đã cho:

              \(\frac{A}{B} = \frac{{A.C}}{{B.C}}\) (C là đa thức khác đa thức 0) 

Lời giải chi tiết

Vì \({x^4} - 1 = {\left( {{x^2}} \right)^2} - 1 = \left( {{x^2} + 1} \right)\left( {{x^2} - 1} \right)\)

\(= \left( {{x^2} + 1} \right)\left( {x + 1} \right)\left( {x - 1} \right) = \left( {{x^3} + {x^2} + x + 1} \right)\left( {x - 1} \right)\)

Do đó, \(\frac{{{x^4} - 1}}{{x - 1}} = \frac{{\left( {x - 1} \right)\left( {{x^3} + {x^2} + x + 1} \right)}}{{x - 1}} = {x^3} + {x^2} + x + 1\)

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close