Giải bài 6.12 trang 10 sách bài tập toán 11 - Kết nối tri thức với cuộc sốngChứng minh rằng: Quảng cáo
Đề bài Chứng minh rằng: a) \({\rm{lo}}{{\rm{g}}_a}\left( {x + \sqrt {{x^2} - 1} } \right) + {\rm{lo}}{{\rm{g}}_a}\left( {x - \sqrt {{x^2} - 1} } \right) = 0\); b) \({\rm{ln}}\left( {1 + {e^{2x}}} \right) = 2x + {\rm{ln}}\left( {1 + {e^{ - 2x}}} \right)\). Phương pháp giải - Xem chi tiết Áp dụng quy tắc tính logarit \({\log _a}(MN) = {\log _a}M + {\log _a}N;\) Biến đổi \(1 + {e^{2x}}{e^{2x}} = \left( {1 + {e^{ - 2x}}} \right)\) Lời giải chi tiết a) \({\rm{lo}}{{\rm{g}}_a}\left( {x + \sqrt {{x^2} - 1} } \right) + {\rm{lo}}{{\rm{g}}_a}\left( {x - \sqrt {{x^2} - 1} } \right) = {\rm{lo}}{{\rm{g}}_a}\left[ {\left( {x + \sqrt {{x^2} - 1} } \right)\left( {x - \sqrt {{x^2} - 1} } \right)} \right]\) \({\rm{ = lo}}{{\rm{g}}_a}\left( {{x^2} - \left( {{x^2} - 1} \right)} \right) = \)\( = {\rm{lo}}{{\rm{g}}_a}1 = 0\). b) \({\rm{ln}}\left( {1 + {e^{2x}}} \right) = {\rm{ln}}\left[ {{e^{2x}}\left( {1 + {e^{ - 2x}}} \right)} \right] = {\rm{ln}}{e^{2x}} + {\rm{ln}}\left( {1 + {e^{ - 2x}}} \right)\)\( = 2x + {\rm{ln}}\left( {1 + {e^{ - 2x}}} \right){\rm{.\;}}\)
Quảng cáo
|