Giải bài 5.32 trang 36 sách bài tập toán 12 - Kết nối tri thức

Trong không gian Oxyz, góc giữa đường thẳng (Delta :frac{{x + 3}}{1} = frac{{y + 1}}{{sqrt 2 }} = frac{{z + 2}}{1}) và mặt phẳng (Oxz) bằng A. ({45^ circ }). B. ({30^ circ }). C. ({60^ circ }). D. ({90^ circ }).

Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Trong không gian Oxyz, góc giữa đường thẳng \(\Delta :\frac{{x + 3}}{1} = \frac{{y + 1}}{{\sqrt 2 }} = \frac{{z + 2}}{1}\) và mặt phẳng (Oxz) bằng

A. \({45^ \circ }\).

B. \({30^ \circ }\).

C. \({60^ \circ }\).

D. \({90^ \circ }\).

Phương pháp giải - Xem chi tiết

Xác định vectơ chỉ phương của đường thẳng và vectơ pháp tuyến của mặt phẳng sau đó tính sin góc tạo bởi đường thẳng và mặt phẳng.

Lời giải chi tiết

Vectơ chỉ phương của \(\Delta \) là \(\overrightarrow u  = \left( {1;\sqrt 2 ;1} \right)\) và vectơ pháp tuyến của (Oxz) là \(\overrightarrow j  = \left( {0;1;0} \right)\).

Ta có \(\sin \left( {\Delta ,\left( {Oxz} \right)} \right) = \frac{{\left| {\overrightarrow u  \cdot \overrightarrow j } \right|}}{{\left| {\overrightarrow u } \right| \cdot \left| {\overrightarrow j } \right|}} = \frac{{\left| {\sqrt 2 } \right|}}{{\sqrt {1 + 2 + 1}  \cdot \sqrt 1 }} = \frac{{\sqrt 2 }}{2}\). Suy ra \(\left( {\Delta ,\left( {Oxz} \right)} \right) = {45^ \circ }\).

Vậy ta chọn đáp án A.

  • Giải bài 5.33 trang 36 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, phương trình mặt cầu (S) có tâm (Ileft( {1;2; - 1} right)) và (S) đi qua (Aleft( { - 1;1;0} right)) là A. ({left( {x - 1} right)^2} + {left( {y - 2} right)^2} + {left( {z + 1} right)^2} = sqrt 6 ). B. ({left( {x + 1} right)^2} + {left( {y + 2} right)^2} + {left( {z - 1} right)^2} = 6). C. ({left( {x - 1} right)^2} + {left( {y - 2} right)^2} + {left( {z + 1} right)^2} = 6). D. ({left( {x + 1} right)^2} + {left( {y - 1} righ

  • Giải bài 5.34 trang 36 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, phương trình ({x^2} + {y^2} + {z^2} - 2x + 4y + 1 = 0) là phương trình mặt cầu có tâm I và bán kính R lần lượt là A. (Ileft( { - 1;2;0} right);R = 2). B. (Ileft( {1; - 2;0} right);R = 2). C. (Ileft( { - 1;2;0} right);R = 4). D. (Ileft( {1; - 2;0} right);R = 4).

  • Giải bài 5.35 trang 36 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, một vectơ pháp tuyến của mặt phẳng chứa đường thẳng (Delta :left{ begin{array}{l}x = 1 + t\y = - 2 + 2t\z = 3 - tend{array} right.) và đi qua điểm (Aleft( {2; - 1;1} right)) là A. (overrightarrow {{n_1}} = left( {3; - 1;1} right)). B. (overrightarrow {{n_2}} = left( {3;1; - 1} right)). C. (overrightarrow {{n_3}} = left( {1; - 1;3} right)). D. (overrightarrow {{n_4}} = left( { - 1;3;1} right)).

  • Giải bài 5.36 trang 37 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, khoảng cách từ điểm (Aleft( { - 2;1;0} right)) đến mặt phẳng (left( P right):2x - 2y + z - 3 = 0) bằng A. 2. B. 6. C. 3. D. 9.

  • Giải bài 5.37 trang 37 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, cho hai đường thẳng: (Delta :left{ begin{array}{l}x = 1 - t\y = 2 + t\z = - 1 + 2tend{array} right.) và (Delta ':frac{{x - 2}}{2} = frac{{y - 1}}{1} = frac{{z + 3}}{{ - 3}}). Vị trí tương đối của hai đường thẳng này là A. chéo nhau. B. cắt nhau. C. song song. D. trùng nhau.

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close