Giải bài 5.32 trang 36 sách bài tập toán 12 - Kết nối tri thứcTrong không gian Oxyz, góc giữa đường thẳng (Delta :frac{{x + 3}}{1} = frac{{y + 1}}{{sqrt 2 }} = frac{{z + 2}}{1}) và mặt phẳng (Oxz) bằng A. ({45^ circ }). B. ({30^ circ }). C. ({60^ circ }). D. ({90^ circ }). Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Trong không gian Oxyz, góc giữa đường thẳng \(\Delta :\frac{{x + 3}}{1} = \frac{{y + 1}}{{\sqrt 2 }} = \frac{{z + 2}}{1}\) và mặt phẳng (Oxz) bằng A. \({45^ \circ }\). B. \({30^ \circ }\). C. \({60^ \circ }\). D. \({90^ \circ }\). Phương pháp giải - Xem chi tiết Xác định vectơ chỉ phương của đường thẳng và vectơ pháp tuyến của mặt phẳng sau đó tính sin góc tạo bởi đường thẳng và mặt phẳng. Lời giải chi tiết Vectơ chỉ phương của \(\Delta \) là \(\overrightarrow u = \left( {1;\sqrt 2 ;1} \right)\) và vectơ pháp tuyến của (Oxz) là \(\overrightarrow j = \left( {0;1;0} \right)\). Ta có \(\sin \left( {\Delta ,\left( {Oxz} \right)} \right) = \frac{{\left| {\overrightarrow u \cdot \overrightarrow j } \right|}}{{\left| {\overrightarrow u } \right| \cdot \left| {\overrightarrow j } \right|}} = \frac{{\left| {\sqrt 2 } \right|}}{{\sqrt {1 + 2 + 1} \cdot \sqrt 1 }} = \frac{{\sqrt 2 }}{2}\). Suy ra \(\left( {\Delta ,\left( {Oxz} \right)} \right) = {45^ \circ }\). Vậy ta chọn đáp án A.
Quảng cáo
|