Giải bài 5.3 trang 24 sách bài tập toán 12 - Kết nối tri thức

Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha \right):x - 2y - 2z + 9 = 0\) và điểm \(A\left( {2; - 1;3} \right)\). a) Tính khoảng cách từ A đến mặt phẳng \(\left( \alpha \right)\). b) Viết phương trình mặt phẳng \(\left( \beta \right)\) đi qua A và song song với \(\left( \alpha \right)\).

Quảng cáo

Đề bài

Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha  \right):x - 2y - 2z + 9 = 0\) và điểm \(A\left( {2; - 1;3} \right)\).

a) Tính khoảng cách từ A đến mặt phẳng \(\left( \alpha  \right)\).

b) Viết phương trình mặt phẳng \(\left( \beta  \right)\) đi qua A và song song với \(\left( \alpha  \right)\).

Phương pháp giải - Xem chi tiết

Ý a: Áp dụng công thức tính khoảng cách từ một điểm đến một mặt phẳng.

Ý b: Mặt phẳng \(\left( \beta  \right)\) đi qua A và có cùng vectơ pháp tuyến với \(\left( \alpha  \right)\).

Lời giải chi tiết

a) Khoảng cách từ A đến mặt phẳng \(\left( \alpha  \right)\) là \(d\left( {A,\alpha } \right) = \frac{{\left| {2 - 2 \cdot \left( { - 1} \right) - 2 \cdot 3 + 9} \right|}}{{\sqrt {{1^2} + {2^2} + {2^2}} }} = \frac{7}{3}\).

b) Ta có \(\left( \beta  \right)\) song song với \(\left( \alpha  \right)\) nên \(\left( \beta  \right)\) có cùng vectơ pháp tuyến với \(\left( \alpha  \right)\).

Suy ra vectơ pháp tuyến của \(\left( \beta  \right)\) là \(\overrightarrow n  = \left( {1; - 2; - 2} \right)\).

Phương trình mặt phẳng của \(\left( \beta  \right)\) là \(1\left( {x - 2} \right) - 2\left( {y + 1} \right) - 2\left( {z - 3} \right) = 0 \Leftrightarrow x - 2y - 2z + 2 = 0\).

  • Giải bài 5.4 trang 24 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, cho hai điểm \(A\left( {2; - 1;0} \right)\), \(B\left( {3;1;2} \right)\) và mặt phẳng \(\left( \alpha \right):x + 2y + 3z - 1 = 0\). a) Viết phương trình mặt phẳng \(\left( \beta \right)\) chứa A, B và vuông góc với mặt phẳng \(\left( \alpha \right)\). b) Viết phương trình mặt phẳng \(\left( P \right)\) chứa A, B và song song với trục \(Ox\).

  • Giải bài 5.5 trang 24 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, cho điểm \(H\left( {3;2;4} \right)\). a) Viết phương trình mặt phẳng \(\left( P \right)\) chứa điểm H và trục Oy. b) Viết phương trình mặt phẳng \(\left( Q \right)\) đi qua điểm H và cắt các trục tọa độ Ox, Oy, Oz lần lượt tại A, B, C (với A, B, C đều không trùng với gốc tọa độ O) sao cho H là trực tâm tam giác ABC.

  • Giải bài 5.6 trang 25 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, một máy phát sóng đặt tại vị trí \(A\left( {1;2;1} \right)\) và có bán kính phủ sóng là 2. Hỏi vùng phủ sóng trên mặt phẳng (Oxy) có bán kính bằng bao nhiêu?

  • Giải bài 5.7 trang 25 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, sàn của một căn phòng thuộc mặt phẳng \(\left( \alpha \right):x + 2y + 2z - 1 = 0\) và trần của căn phòng đó thuộc mặt phẳng \(\left( \beta \right):x + 2y + 2z - 3 = 0\). Hỏi chiều cao của căn phòng có đủ để kê một chiếc tủ có chiều cao bằng 1 hay không?

  • Giải bài 5.2 trang 24 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, cho ba điểm \(A\left( {2;0;0} \right)\), \(B\left( {0; - 3;0} \right)\), \(C\left( {0;0;1} \right)\). Viết phương trình mặt phẳng \(\left( {ABC} \right)\).

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close