Giải bài 5 trang 66 SBT toán 10 - Chân trời sáng tạo

Xét vị trí tương đối của các cặp đường thẳng

Quảng cáo

Đề bài

Xét vị trí tương đối của các cặp đường thẳng \({d_1}\) và \({d_2}\) sau đây:

a) \({d_1}:2x + y + 9 = 0\) và \({d_2}:2x + 3y - 9 = 0\)

b) \({d_1}:\left\{ \begin{array}{l}x = 2 + t\\y = 1 - 2t\end{array} \right.\) và \({d_2}:2x + y + 10 = 0\)

c) \({d_1}:\left\{ \begin{array}{l}x = 1 - t\\y = 8 - 5t\end{array} \right.\) và \({d_2}:5x - y + 3 = 0\)

Lời giải chi tiết

a) Vectơ pháp tuyến của \({d_1}\) và \({d_2}\) lần lượt là \(\overrightarrow {{n_1}}  = \left( {2;1} \right),\overrightarrow {{n_2}}  = \left( {2;3} \right)\)→ Hai đường thẳng cắt nhau

b) Vectơ pháp tuyến của \({d_1}\) và \({d_2}\) lần lượt là: \(\overrightarrow {{n_1}}  = \left( {2;1} \right),\overrightarrow {{n_2}}  = \left( {2;1} \right)\)

Ta thấy \(\overrightarrow {{n_2}}  = \overrightarrow {{n_1}} \) → Hai đường thẳng song song hoặc trùng nhau

Xét \(A\left( {2;1} \right)\) thuộc \({d_1}\), ta thấy A không thuộc \({d_2}\) → Hai đường thẳng này song song với nhau

c) Vectơ pháp tuyến của \({d_1}\) và \({d_2}\) lần lượt là: \(\overrightarrow {{n_1}}  = \left( {5; - 1} \right),\overrightarrow {{n_2}}  = \left( {5; - 1} \right)\)

Ta thấy \(\overrightarrow {{n_2}}  = \overrightarrow {{n_1}} \) → Hai đường thẳng song song hoặc trùng nhau

Xét \(A\left( {1;8} \right)\) thuộc \({d_1}\), ta thấy A cũng thuộc \({d_2}\) → Hai đường thẳng này trùng nhau

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close