Giải bài 4.68 trang 71 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Trong mặt phẳng tọa độ Oxy cho ba điểm A( - 2;1),B(1;4) và C(5; - 2).

Quảng cáo

Đề bài

Trong mặt phẳng tọa độ \(Oxy\) cho ba điểm \(A( - 2;1),\,\,B(1;4)\) và \(C(5; - 2).\)

a) Chứng minh rằng \(A,\,\,B,\,\,C\) là ba đỉnh của một tam giác. Tìm tọa độ trọng tâm \(G\) của tam giác \(ABC.\)

b) Tìm tọa độ trực tâm \(H\) và tâm đường tròn ngoại tiếp \(I\) của tam giác \(ABC.\)

Lời giải chi tiết

a)      Ta có: \(\overrightarrow {AB}  = (3;3)\) và \(\overrightarrow {AC}  = (7; - 3)\)

\( \Rightarrow \) \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) không cùng phương

\( \Rightarrow \) ba điểm \(A,\,\,B,\,\,C\) là ba đỉnh của một tam giác

Xét \(\Delta ABC\) có: \(G\) là trọng tâm của tam giác \(ABC\)

\( \Rightarrow \) \(\left\{ {\begin{array}{*{20}{c}}{x = \frac{{ - 2 + 1 + 5}}{3} = \frac{4}{3}}\\{y = \frac{{1 + 4 - 2}}{3} = 1}\end{array}} \right.\) \( \Rightarrow \) \(G\left( {\frac{4}{3};1} \right)\)

Vậy tọa độ trọng tâm của tam giác là: \(G\left( {\frac{4}{3};1} \right)\)

b)     Gọi \(H(x;y)\) là trực tâm của \(\Delta ABC\)

Ta có: \(\overrightarrow {CH}  = (x - 5;y + 2)\) và \(\overrightarrow {BH}  = (x - 1;y - 4)\)

\( \Rightarrow \) \(\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {CH} .\overrightarrow {AB}  = 0}\\{\overrightarrow {BH} .\overrightarrow {AC}  = 0}\end{array}} \right.\) \( \Leftrightarrow \) \(\left\{ {\begin{array}{*{20}{c}}{3\left( {x - 5} \right) + 3\left( {y + 2} \right) = 0}\\{7\left( {x - 1} \right) - 3\left( {y - 4} \right) = 0}\end{array}} \right.\)

\( \Leftrightarrow \) \(\left\{ {\begin{array}{*{20}{c}}{x + y = 3}\\{7x - 3y =  - 5}\end{array}} \right.\) \( \Leftrightarrow \) \(\left\{ {\begin{array}{*{20}{c}}{x = \frac{2}{5}}\\{y = \frac{{13}}{5}}\end{array}} \right.\) \( \Rightarrow \) \(H\left( {\frac{2}{5};\frac{{13}}{5}} \right)\)

Gọi \(I(x';y')\) là tâm đường tròn ngoại tiếp \(\Delta ABC\)

Ta có: \(\overrightarrow {IH}  = \left( {\frac{2}{5} - x';\frac{{13}}{5} - y'} \right)\) và \(\overrightarrow {IG}  = \left( {\frac{4}{3} - x';1 - y'} \right)\)

Ta có: \(\overrightarrow {IH}  = 3\overrightarrow {IG} \,\, \Leftrightarrow \,\,\left( {\frac{2}{5} - x';\frac{{13}}{5} - y'} \right) = 3\left( {\frac{4}{3} - x';1 - y'} \right)\)

\( \Leftrightarrow \) \(\left\{ {\begin{array}{*{20}{c}}{\frac{2}{5} - x' = 4 - 3x'}\\{\frac{{13}}{5} - y' = 3 - 3y'}\end{array}} \right.\) \( \Leftrightarrow \) \(\left\{ {\begin{array}{*{20}{c}}{2x' = \frac{{18}}{5}}\\{2y' = \frac{2}{5}}\end{array}} \right.\) \( \Leftrightarrow \) \(\left\{ {\begin{array}{*{20}{c}}{x' = \frac{9}{5}}\\{y' = \frac{1}{5}}\end{array}} \right.\) \( \Rightarrow \) \(I\left( {\frac{9}{5};\frac{1}{5}} \right)\)

Vậy \(H\left( {\frac{2}{5};\frac{{13}}{5}} \right)\) và \(I\left( {\frac{9}{5};\frac{1}{5}} \right)\).

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close