Giải bài 4.53 trang 68 sách bài tập toán 10 - Kết nối tri thức với cuộc sốngCho tam giác ABC có AB = 1,BC = 2 Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Quảng cáo
Đề bài Cho tam giác \(ABC\) có \(AB = 1,\,\,BC = 2\) và \(\widehat {ABC} = {60^ \circ }.\) Tích vô hướng \(\overrightarrow {BC} .\overrightarrow {CA} \) bằng A. \(\sqrt 3 \) B. \( - \sqrt 3 \) C. \(3\) D. \( - 3\) Phương pháp giải - Xem chi tiết - Áp dụng định lý cosin để tính \(AC\): \(A{C^2} = A{B^2} + B{C^2} - 2AB.BC.\cos \widehat {ABC}\) - Áp dụng định lý sin để tính góc \(\widehat {ACB}\): \(\frac{{AB}}{{\sin \widehat {ACB}}} = \frac{{AC}}{{\sin \widehat {ABC}}}\) - Áp dụng công thức tính tích vô hướng của \(\overrightarrow {BC} .\overrightarrow {CA} \) Lời giải chi tiết Gọi \(D\) là điểm đối xứng với \(B\) qua \(C\) Áp dụng định lý cosin, ta có: \(\begin{array}{l}A{C^2} = A{B^2} + B{C^2} - 2AB.BC.\cos \widehat {ABC}\\ \Rightarrow \,\,A{C^2} = 1 + 4 - 2.1.2.\cos {60^ \circ } = 3\\ \Rightarrow \,\,AC = \sqrt 3 \end{array}\) Áp dụng định lý sin, ta có: \(\begin{array}{l}\frac{{AB}}{{\sin \widehat {ACB}}} = \frac{{AC}}{{\sin \widehat {ABC}}}\,\, \Leftrightarrow \,\,\frac{1}{{\sin \overrightarrow {ACB} }} = \frac{{\sqrt 3 }}{{\sin {{60}^ \circ }}}\\ \Leftrightarrow \,\,\sin \widehat {ACB} = \frac{{\sin {{60}^ \circ }}}{{\sqrt 3 }} = \frac{1}{2}\\ \Leftrightarrow \,\,\widehat {ACB} = {30^ \circ }\,\, \Rightarrow \,\,\widehat {ACD} = {180^ \circ } - {30^ \circ } = {150^ \circ }\end{array}\) Ta có: \(\overrightarrow {BC} .\overrightarrow {CA} = \overrightarrow {CD} .\overrightarrow {CA} = CD.CA.\cos \left( {\overrightarrow {CD} ,\overrightarrow {CA} } \right) = 2.2.\cos {150^ \circ } = - 3\) Chọn D.
Quảng cáo
|