Bài 4.29 trang 206 SBT giải tích 12

Giải bài 4.29 trang 206 sách bài tập giải tích 12. Chứng minh rằng hai số phức liên hợp...

Quảng cáo

Đề bài

Chứng minh rằng hai số phức liên hợp \(z\) và \(\overline z \) là hai nghiệm của một phương trình bậc hai với hệ số thực.

Phương pháp giải - Xem chi tiết

Tính \(z + \overline z \) và \(z.\overline z \) rồi suy ra phương trình bậc hai nhận \(z\) và \(\overline z \) làm nghiệm.

Lời giải chi tiết

Nếu \(z = a + bi\) thì \(\overline z  = a - bi\)

\(z + \overline z  =a+bi+a-bi= 2a \in \mathbb{R};\)

\(z.\overline z   = \left( {a + bi} \right)\left( {a - bi} \right) \) \(= {a^2} - {\left( {bi} \right)^2}= {a^2} + {b^2} \in \mathbb{R}\)

Khi đó \(z\) và \(\overline z \) là hai nghiệm của phương trình \(\left( {x - z} \right)\left( {x - \overline z } \right) = 0\)\( \Leftrightarrow {x^2} - \left( {z + \overline z } \right)x + z.\bar z = 0\)\( \Leftrightarrow {x^2} - 2ax + {a^2} + {b^2} = 0\).

Loigiaihay.com

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close