Giải bài 4.27 trang 18 sách bài tập toán 12 - Kết nối tri thứcHàm cầu và hàm cung của một sản phẩm được mô hình hóa bởi: Hàm cầu: (p = - 0,2x + 8) và hàm cung: (p = 0,1x + 2), trong đó (x) là số đơn vị sản phẩm, (p) là giá của mỗi đơn vị sản phẩm (tính bằng triệu đồng). Tìm thặng dư tiêu dùng và thặng dư sản xuất đối với sản phẩm này. Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Hàm cầu và hàm cung của một sản phẩm được mô hình hóa bởi: Hàm cầu: \(p = - 0,2x + 8\) và hàm cung: \(p = 0,1x + 2\), trong đó \(x\) là số đơn vị sản phẩm, \(p\) là giá của mỗi đơn vị sản phẩm (tính bằng triệu đồng). Tìm thặng dư tiêu dùng và thặng dư sản xuất đối với sản phẩm này. Phương pháp giải - Xem chi tiết Xét phương trình hoành độ giao điểm của hàm cung và hàm cầu, giải phương trình ta được \(x = {x_0}\), thay vào hàm ta có \(p = {p_0}\). Giả sử hàm cung là \(p = {p_1}\), hàm cầu là \(p = {p_2}\). Thặng dư tiêu dùng được tính bằng công thức \(\int\limits_0^{{x_0}} {\left( {{p_2} - {p_0}} \right)dx} \). Thặng dư sản xuất được tính bằng công thức \(\int\limits_0^{{x_0}} {\left( {{p_0} - {p_1}} \right)dx} \). Lời giải chi tiết Xét phương trình \( - 0,2x + 8 = 0,1x + 2 \Leftrightarrow x = 20\). Khi đó \(p = 0,1 \cdot 20 + 2 = 4\). Thặng dư tiêu dùng là \(\int\limits_0^{20} {\left( { - 0,2x + 8 - 4} \right)dx} = \left. {\left( { - 0,1{x^2} + 4x} \right)} \right|_0^{20} = - 0,1 \cdot {20^2} + 4 \cdot 20 = 40\) (triệu đồng). Thặng dư sản xuất là \(\int\limits_0^{20} {\left( {4 - 0,1x - 2} \right)dx} = \left. {\left( {2x - 0,05{x^2}} \right)} \right|_0^{20} = 20\) (triệu đồng).
Quảng cáo
|