Giải bài 4.23 trang 17 sách bài tập toán 12 - Kết nối tri thứcTính diện tích của các hình phẳng giới hạn bởi các đường sau: a) (y = {e^x},{rm{ }}y = sqrt x ,{rm{ }}x = 0,{rm{ }}x = 1); b) (y = cos x,{rm{ }}y = frac{1}{2},{rm{ }}x = 0,{rm{ }}x = frac{pi }{3}). Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Quảng cáo
Đề bài Tính diện tích của các hình phẳng giới hạn bởi các đường sau: a) \(y = {e^x},{\rm{ }}y = \sqrt x ,{\rm{ }}x = 0,{\rm{ }}x = 1\); b) \(y = \cos x,{\rm{ }}y = \frac{1}{2},{\rm{ }}x = 0,{\rm{ }}x = \frac{\pi }{3}\). Phương pháp giải - Xem chi tiết Ý a: Sử dụng công thức tính diện tích của hình vẽ giới hạn bởi hai đồ thị trên một đoạn, xác định hàm số nào có giá trị lớn hơn trên đoạn đó để bỏ dấu giá trị tuyệt đối. Ý b: Sử dụng công thức tính diện tích của hình vẽ giới hạn bởi hai đồ thị trên một đoạn, xác định hàm số nào có giá trị lớn hơn trên đoạn đó để bỏ dấu giá trị tuyệt đối. Lời giải chi tiết a) Vì \({e^x} \ge 1 \ge \sqrt x \) với mọi \(x \in \left[ {0;1} \right]\) nên diện tích cần tìm là \(S = \int\limits_0^1 {\left| {{e^x} - \sqrt x } \right|dx} = \int\limits_0^1 {\left( {{e^x} - \sqrt x } \right)dx} = \left. {\left( {{e^x} - \frac{2}{3}x\sqrt x } \right)} \right|_0^1 = e - \frac{2}{3} - 1 = e - \frac{5}{3}\) \( = \left. {\left( {\frac{{ - {x^3}}}{3} + 4x} \right)} \right|_0^2 + \left. {\left( {\frac{{{x^3}}}{3} - 4x} \right)} \right|_2^5 = \frac{{ - 8}}{3} + 8 + \frac{{125}}{3} - 20 - \frac{8}{3} + 8 = \frac{{97}}{3}\). b) Vì \(\cos x \ge \frac{1}{2}\) với mọi \(x \in \left[ {0;\frac{\pi }{3}} \right]\) nên diện tích cần tìm là \(S = \int\limits_0^{\frac{\pi }{3}} {\left| {\cos x - \frac{1}{2}} \right|dx} = \int\limits_0^{\frac{\pi }{3}} {\left( {\cos x - \frac{1}{2}} \right)dx} = \left. {\left( {\sin x - \frac{x}{2}} \right)} \right|_0^{\frac{\pi }{3}} = \frac{{\sqrt 3 }}{2} - \frac{\pi }{6}\).
Quảng cáo
|