Giải bài 4 trang 65 sách bài tập toán 11 - Cánh diều

Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\) là:

Quảng cáo

Đề bài

Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\) là:

A. \(y = f\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right).\)

B. \(y = f'\left( {{x_0}} \right)\left( {x + {x_0}} \right) + f\left( {{x_0}} \right).\)

C. \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right).\)

D. \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) - f\left( {{x_0}} \right).\)

Phương pháp giải - Xem chi tiết

Dựa vào lý thuyết để làm

Lời giải chi tiết

Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm x0 thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(P\left( {{x_0};{y_0}} \right)\) là \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right).\)

 Đáp án C.

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close