Giải bài 4 trang 13 vở thực hành Toán 9

Dùng MTCT thích hợp để tìm nghiệm của các hệ phương trình sau: a) (left{ begin{array}{l}12x - 5y + 24 = 0\ - 5x - 3y - 10 = 0end{array} right.); b) (left{ begin{array}{l}frac{1}{3}x - y = frac{2}{3}\x - 3y = 2end{array} right.); c) (left{ begin{array}{l}3x - 2y = 1\ - x + frac{2}{3}y = 0end{array} right.); d) (left{ begin{array}{l}frac{4}{9}x - frac{3}{5}y = 11\frac{2}{9}x + frac{1}{5}y = - 2end{array} right.).

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Quảng cáo

Đề bài

Dùng MTCT thích hợp để tìm nghiệm của các hệ phương trình sau:

a) \(\left\{ \begin{array}{l}12x - 5y + 24 = 0\\ - 5x - 3y - 10 = 0\end{array} \right.\);

b) \(\left\{ \begin{array}{l}\frac{1}{3}x - y = \frac{2}{3}\\x - 3y = 2\end{array} \right.\);

c) \(\left\{ \begin{array}{l}3x - 2y = 1\\ - x + \frac{2}{3}y = 0\end{array} \right.\);

d) \(\left\{ \begin{array}{l}\frac{4}{9}x - \frac{3}{5}y = 11\\\frac{2}{9}x + \frac{1}{5}y =  - 2\end{array} \right.\).

Phương pháp giải - Xem chi tiết

Dùng MTCT để tìm nghiệm của các hệ phương trình.

Lời giải chi tiết

a) Bấm máy tính ta có nghiệm của hệ phương trình là \(\left( { - 2;0} \right)\).

b) Bấm máy tính ta thấy màn hình hiển thị “Infinite Sol”. Vậy hệ phương trình có vô số nghiệm có dạng \(\left( {x;\frac{1}{3}x - \frac{2}{3}} \right)\).

c) Bấm máy tính ta có nghiệm của hệ phương trình là \(\left( {\frac{1}{2};\frac{1}{4}} \right)\).

d) Bấm máy tính ta có nghiệm của hệ phương trình là \(\left( {\frac{9}{2}; - 15} \right)\).

  • Giải bài 5 trang 14 vở thực hành Toán 9

    Không sử dụng MTCT, giải các hệ phương trình sau: a) (left{ begin{array}{l}4x - 7y = 5\ - 6x + y = 2end{array} right.); b) (left{ begin{array}{l}x - y - 1,5 = 0\ - 3x - 2 = 0end{array} right.)

  • Giải bài 6 trang 14 vở thực hành Toán 9

    Một khu vui chơi bán vé vào cửa với giá 120 nghìn đồng mỗi vé, trẻ em cao dưới 1m được giảm còn 70 nghìn đồng mỗi vé. Vào một ngày cuối tuần, khu vui chơi đã bán được 450 vé và thu về 45 triệu đồng. Gọi x là số vé bán được ở mức giá 120 nghìn đồng và y là số vé bán được ở mức giá 70 nghìn đồng. a) Hãy viết một hệ hai phương trình liên quan đến các biến x và y. b) Giải hệ hai phương trình nhận được ở câu a để cho biết mỗi loại vé đã bán được bao nhiêu?

  • Giải bài 3 trang 13 vở thực hành Toán 9

    Cho hệ phương trình (left{ begin{array}{l}2x - y = - 3\ - 2{m^2}x + 9y = 3left( {m + 3} right)end{array} right.), trong đó m là số đã cho. Giải hệ phương trình trong mỗi trường hợp sau: a) (m = - 2); b) (m = - 3); c) (m = 3).

  • Giải bài 2 trang 12 vở thực hành Toán 9

    Giải các hệ phương trình sau bằng phương pháp cộng đại số: a) (left{ begin{array}{l}3x + 2y = 62x - 2y = 14end{array} right.); b) (left{ begin{array}{l}0,3x + 0,5y = 31,5x - 2y = 1,5end{array} right.); c) (left{ begin{array}{l} - 2x + 6y = 83x - 9y = - 12end{array} right.).

  • Giải bài 1 trang 12 vở thực hành Toán 9

    Giải các hệ phương trình sau bằng phương pháp thế: a) (left{ begin{array}{l}x - y = 33x - 4y = 2end{array} right.); b) (left{ begin{array}{l}7x - 3y = 134x + y = 2end{array} right.); c) (left{ begin{array}{l}0,5x - 1,5y = 1 - x + 3y = 2end{array} right.).

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

close