Giải bài 37 trang 136 sách bài tập toán 9 - Cánh diều tập 2

Hai bạn An và Bình mỗi bạn có một tấm bìa hình chữ nhật với kích thước giống nhau là a (cm) × 3a (cm). An cuộn tấm bìa theo chiều dài cho hai mép sát nhau rồi dùng băng dính dán lại được mặt xung quanh của một hình trụ và hình trụ này có thể tích V1 (khi đó chiều rộng của tấm bìa trở thành chiều cao của hình trụ). Bình cuộn tấm bìa theo chiều rộng theo cách tương tự trên để được mặt xung quanh của một hình trụ và hình trụ này có thể tích V2 (khi đó chiều dài của tấm bìa trở thành chiều cao của h

Quảng cáo

Đề bài

Hai bạn An và Bình mỗi bạn có một tấm bìa hình chữ nhật với kích thước giống nhau là a (cm) × 3a (cm). An cuộn tấm bìa theo chiều dài cho hai mép sát nhau rồi dùng băng dính dán lại được mặt xung quanh của một hình trụ và hình trụ này có thể tích V1 (khi đó chiều rộng của tấm bìa trở thành chiều cao của hình trụ). Bình cuộn tấm bìa theo chiều rộng theo cách tương tự trên để được mặt xung quanh của một hình trụ và hình trụ này có thể tích V2 (khi đó chiều dài của tấm bìa trở thành chiều cao của hình trụ). Tính tỉ số của V1 và V2.

Phương pháp giải - Xem chi tiết

Dựa vào: Diện tích hình cầu: \(V = \frac{4}{3}\pi {R^3}\).

Lời giải chi tiết

Gọi R (cm) và r (cm) lần lượt là bán kính đáy của hình trụ An và Bình đã cuộn (R > 0, r > 0).

Hình trụ An cuộn có chu vi đáy bằng 3a nên ta có 2πR = 3a, suy ra \(R = \frac{{3a}}{{2\pi }}\) (cm).

Hình trụ An cuộn có chu vi đáy bằng a nên ta có 2πr = a, suy ra \(r = \frac{a}{{2\pi }}\) (cm)

Thể tích của hình trụ bạn An cuộn là \({V_1} = \pi {\left( {\frac{{3a}}{{2\pi }}} \right)^2}.a = \frac{{9{a^3}}}{{4\pi }}\) (cm3).

Thể tích của hình trụ bạn Bình cuộn là \({V_2} = \pi {\left( {\frac{a}{{2\pi }}} \right)^2}.3a = \frac{{3{a^3}}}{{4\pi }}\) (cm3).

Do đó, tỉ số của V1 và V2 là \(\frac{{{V_1}}}{{{V_2}}} = \frac{{\frac{{9{a^3}}}{{4\pi }}}}{{\frac{{3{a^3}}}{{4\pi }}}} = 3\).

  • Giải bài 38 trang 136 sách bài tập toán 9 - Cánh diều tập 2

    Cho hình lập phương ABCD.A’B’C’D’ có thể tích bằng 27a3. Hình trụ (T) có hai đáy là hai đường tròn (O), (O’) lần lượt ngoại tiếp hình vuông ABCD và hình vuông A’B’C’D’ (Hình 27). Tính diện tích toàn phần của hình trụ (T) theo a.

  • Giải bài 39 trang 137 sách bài tập toán 9 - Cánh diều tập 2

    Bác Long đã chi tiền để làm một cái bể hình trụ có bán kính đường tròn đáy là 0,8 m và có thể tích là 1,12π m3. Đáy bể làm bằng bê tông giá 100 000 đồng/m2. Phần thân làm bằng tôn inox giá 15 000 đồng/m2. Phần nắp làm bằng nhôm giá 12 000 đồng/m2. Hỏi số tiền bác Long đã chi để làm được cái bể đó là bao nhiêu đồng (làm tròn kết quả đến hàng nghìn)?

  • Giải bài 40 trang 137 sách bài tập toán 9 - Cánh diều tập 2

    Từ một khối gỗ hình trụ (T) với hai đường tròn đáy là (A; R), (A’; R) và đường cao AA’ = h, người ta khoét đi một khối hình nón (N) có bán kính đường tròn đáy (A'C = frac{2}{3}R) và đường cao trùng với đường cao của hình trụ (T) (Hình 28). Hỏi thể tích phần còn lại của khối gỗ (T) sau khi khoét bỏ khối hình nón (N) bằng bao nhiêu phần trăm thể tích của khối gỗ (T) ban đầu (làm tròn kết quả đến hàng phần mười)?

  • Giải bài 41 trang 137 sách bài tập toán 9 - Cánh diều tập 2

    Từ một miếng tôn có dạng hình vuông ABCD cạnh 4 dm, người ta cắt ra một phần tư hình tròn tâm A bán kính AB = 4 dm (như phần được tô màu ở Hình 29) và cuộn lại thành một cái phễu hình nón. Tính chiều cao của cái phễu đó (theo đơn vị decimét và làm tròn kết quả đến hàng phần trăm).

  • Giải bài 42 trang 137 sách bài tập toán 9 - Cánh diều tập 2

    Một hình nón có bán kính đáy là 8 cm, đường sinh là 17 cm. Một hình cầu có thể tích bằng thể tích hình nón đó. Tính bán kính hình cầu (theo đơn vị centimét và làm tròn kết quả đến hàng phần mười).

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close