Giải Bài 35 trang 78 sách bài tập toán 7 - Cánh diềuCho tam giác ABC có \(\widehat {ABC} = 53^\circ ,\widehat {BAC} = 90^\circ \) , AH vuông góc với BC (H thuộc BC). Vẽ tia Bx vuông góc với BC. Trên tia Bx lấy điểm D sao cho BD = HA (Hình 23). Quảng cáo
Đề bài Cho tam giác ABC có \(\widehat {ABC} = 53^\circ ,\widehat {BAC} = 90^\circ \) , AH vuông góc với BC (H thuộc BC). Vẽ tia Bx vuông góc với BC. Trên tia Bx lấy điểm D sao cho BD = HA (Hình 23).
a) Chứng minh ∆AHB = ∆DBH. b) Chứng minh DH vuông góc với AC. c) Tính số đo góc BDH. Phương pháp giải - Xem chi tiết - Xét các điều kiện về cạnh và góc để chứng minh ∆AHB = ∆DBH - Từ đó suy ra các góc tương ứng bằng nhau để chứng minh DH vuông góc với AC và tính số đo góc BDH. Lời giải chi tiết a) Xét ∆AHB và ∆DBH có: \(\widehat {AHB} = \widehat {HB{\rm{D}}}\) (cùng bằng 90°), BH là cạnh chung, AH = BD (giả thiết), Suy ra ∆AHB = ∆DBH (hai cạnh góc vuông). Vậy ∆AHB = ∆DBH. b) Do ∆AHB = ∆DBH (chứng minh câu a) nên \(\widehat {ABH} = \widehat {DHB}\) (hai góc tương ứng). Mà \(\widehat {ABH},\widehat {DHB}\) ở vị trí so le trong Do đó AB // DH. Lại có, AB ⊥ AC nên DH ⊥ AC (một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại). Vậy DH ⊥ AC. c) Do ∆AHB = ∆DBH (chứng minh câu a) nên\(\widehat {BAH} = \widehat {HDB}\) (hai góc tương ứng). Xét tam giác ABH vuông tại H có: \(\widehat {ABH} + \widehat {BAH} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°). Suy ra \(\widehat {BAH} = 90^\circ - \widehat {ABH} = 90^\circ - 53^\circ = 37^\circ \). Do đó \(\widehat {BDH} = 37^\circ \). Vậy \(\widehat {BDH} = 37^\circ \)
Quảng cáo
|