Bài 3.39 trang 131 SBT hình học 12Giải bài 3.39 trang 131 sách bài tập hình học 12. Cho hai đường thẳng... Quảng cáo
Đề bài Cho hai đường thẳng \(\Delta :\dfrac{{x - 1}}{2} = \dfrac{{y + 3}}{1} = \dfrac{{z - 4}}{{ - 2}}\) và \(\Delta ':\dfrac{{x + 2}}{{ - 4}} = \dfrac{{y - 1}}{{ - 2}} = \dfrac{{z + 1}}{4}\) a) Xét vị trí tương đối giữa \(\Delta \) và \(\Delta '\); b) Tính khoảng cách giữa \(\Delta \) và \(\Delta '\). Phương pháp giải - Xem chi tiết a) Nhận xét vị trí tương đối của hai đường thẳng, sử dụng mối quan hệ giữa hai đường thẳng song song: \(\Delta //\Delta ' \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow u = k\overrightarrow {u'} \\M \in \Delta ,M \notin \Delta '\end{array} \right.\) b) Khoảng cách giữa hai đường thẳng song song \(d\left( {\Delta ,\Delta '} \right) = d\left( {M,\Delta '} \right) = \dfrac{{\left| {\left[ {\overrightarrow {MA'} ,\overrightarrow {u'} } \right]} \right|}}{{\left| {\overrightarrow {u'} } \right|}}\) Lời giải chi tiết a) \(\Delta \) đi qua điểm M0(1; -3; 4) và có vecto chỉ phương \(\overrightarrow a = (2;1; - 2)\) \(\Delta '\) đi qua điểm M0’ (-2; 1; -1) và có vecto chỉ phương \(\overrightarrow {a'} = ( - 4; - 2;4)\) Ta có \(\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {a'} = 2\overrightarrow a }\\{{M_0} \notin \Delta '}\end{array}} \right.\) Vậy \(\Delta '\) song song với \(\Delta \) b) Ta có \(\overrightarrow {{M_0}M{'_0}} = ( - 3;4; - 5)\), \(\overrightarrow a = (2;1; - 2)\) \(\overrightarrow n = \left[ {\overrightarrow {{M_0}M{'_0}} ,\overrightarrow a } \right] = ( - 3; - 16; - 11)\) \(d(\Delta ,\Delta ') = M{'_0}H = \dfrac{{|\overrightarrow n |}}{{|\overrightarrow a |}}\)\( = \dfrac{{\sqrt {9 + 256 + 121} }}{{\sqrt {4 + 1 + 4} }} = \dfrac{{\sqrt {386} }}{3}\) Loigiaihay.com
Quảng cáo
|