Giải bài 3.25 trang 41 sách bài tập toán 10 - Kết nối tri thức với cuộc sốngCho Quảng cáo
Đề bài Cho \(\cos \alpha = \frac{1}{4}.\) Giá trị của \(P = \frac{{\tan \alpha + 2\cot \alpha }}{{2\tan \alpha + 3\cot \alpha }}\) là: A. \( - \frac{{17}}{{33}}.\) B. \(\frac{{17}}{{33}}.\) C. \(\frac{1}{2}.\) D. \(\frac{{16}}{{33}}.\) Phương pháp giải - Xem chi tiết - Tính \({\tan ^2}\alpha \) - Biến đổi \(P = \frac{{\tan \alpha + 2\cot \alpha }}{{2\tan \alpha + 3\cot \alpha }} = \frac{{{{\tan }^2}\alpha + 2}}{{2{{\tan }^2}\alpha + 3}}\) Lời giải chi tiết Ta có: \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\,\, \Rightarrow {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }} - 1 = 15.\) Ta có: \(P = \frac{{\tan \alpha + 2\cot \alpha }}{{2\tan \alpha + 3\cot \alpha }} = \frac{{\frac{{\tan \alpha }}{{\cot \alpha }} + 2}}{{\frac{{2\tan \alpha }}{{\cot \alpha }} + 3}} = \frac{{{{\tan }^2}\alpha + 2}}{{2{{\tan }^2}\alpha + 3}} = \frac{{15 + 2}}{{2.15 + 3}} = \frac{{17}}{{33}}.\) Chọn B.
Quảng cáo
|