Giải bài 32 trang 71 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải các phương trình sau:

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Giải các phương trình sau:

a) \({3^{{x^2} - 3x}} = {4^{4x}}\)

b) \({\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - x - 3} \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x - 1} \right) + 1\).

Phương pháp giải - Xem chi tiết

a) Sử dụng phương pháp logarit hóa

 \({3^{{x^2} - 3x}} = {4^{4x}} \Leftrightarrow {x^2} - 3x = 4x{\rm{lo}}{{\rm{g}}_3}4\)

b) Áp dụng quy tắc tính logarit đưa hai vế của phương trình về cùng cơ số

\({\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - x - 3} \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x - 1} \right) + 1\)\( \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - x - 3} \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x - 1} \right) + {\rm{lo}}{{\rm{g}}_3}3\)

\( \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - x - 3} \right) = {\rm{lo}}{{\rm{g}}_3}3\left( {2x - 1} \right)\)

Lời giải chi tiết

a) Ta có: \({3^{{x^2} - 3x}} = {4^{4x}} \Leftrightarrow {x^2} - 3x = 4x{\rm{lo}}{{\rm{g}}_3}4 \Leftrightarrow x\left( {x - 3 - 4{\rm{lo}}{{\rm{g}}_3}4} \right) = 0 \Leftrightarrow x = 0\) hoặc \(x = 3 + 4{\rm{lo}}{{\rm{g}}_3}4\).

Vậy tập nghiệm của phương trình đã cho là \(S = \left\{ {0;3 + 4{\rm{lo}}{{\rm{g}}_3}4} \right\}\).

b) Điều kiện: \({x^2} - x - 3 > 0\) và \(2x - 1 > 0\). Ta có:

\({\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - x - 3} \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x - 1} \right) + 1\)

\( \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - x - 3} \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x - 1} \right) + {\rm{lo}}{{\rm{g}}_3}3\)

\( \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - x - 3} \right) = {\rm{lo}}{{\rm{g}}_3}3\left( {2x - 1} \right)\)\( \Leftrightarrow {x^2} - x - 3 = 3\left( {2x - 1} \right)\)

\( \Leftrightarrow {x^2} - 7x = 0 \Leftrightarrow x = 0;x = 7\). Đối chiếu với điều kiện, thì chỉ có \(x = 7\) thoả mãn.

Vậy nghiệm của phương trình đã cho là \(x = 7\).

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close