Giải bài 3 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1Chứng minh các đẳng thức lượng giác sau: a) \({\sin ^2}\left( {x + \frac{\pi }{8}} \right) - {\sin ^2}\left( {x - \frac{\pi }{8}} \right) = \frac{{\sqrt 2 }}{2}\sin 2x\); b) \({\sin ^2}y + 2\cos x\cos y\cos \left( {x - y} \right) = {\cos ^2}x + {\cos ^2}\left( {x - y} \right)\). Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Chứng minh các đẳng thức lượng giác sau: a) \({\sin ^2}\left( {x + \frac{\pi }{8}} \right) - {\sin ^2}\left( {x - \frac{\pi }{8}} \right) = \frac{{\sqrt 2 }}{2}\sin 2x\); b) \({\sin ^2}y + 2\cos x\cos y\cos \left( {x - y} \right) = {\cos ^2}x + {\cos ^2}\left( {x - y} \right)\). Phương pháp giải - Xem chi tiết a) + Sử dụng kiến thức công thức tổng thành tích để chứng minh: \(\sin \alpha + \sin \beta = 2\sin \frac{{\alpha + \beta }}{2}\cos \frac{{\alpha - \beta }}{2};\sin \alpha - \sin \beta = 2\cos \frac{{\alpha + \beta }}{2}\sin \frac{{\alpha - \beta }}{2}\) + Sử dụng kiến thức về công thức góc nhân đôi để chứng minh: \(\sin 2\alpha = 2\sin \alpha \cos \alpha \) b) Sử dụng kiến thức về công thức biến đổi tích thành tổng để chứng minh \(\cos \alpha \cos \beta = \frac{1}{2}\left[ {\cos \left( {\alpha + \beta } \right) + \cos \left( {\alpha - \beta } \right)} \right]\) Sử dụng kiến thức về công thức cộng để chứng minh \(\cos \left( {\alpha + \beta } \right) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \) Lời giải chi tiết a) \({\sin ^2}\left( {x + \frac{\pi }{8}} \right) - {\sin ^2}\left( {x - \frac{\pi }{8}} \right) \) \( = \left[ {\sin \left( {x + \frac{\pi }{8}} \right) - \sin \left( {x - \frac{\pi }{8}} \right)} \right]\left[ {\sin \left( {x + \frac{\pi }{8}} \right) + \sin \left( {x - \frac{\pi }{8}} \right)} \right]\) \( = 2\sin \frac{\pi }{8}\cos x.2\sin x\cos \frac{\pi }{8} \) \( = 2\sin \frac{\pi }{4}\cos x\sin x \) \( = \frac{{\sqrt 2 }}{2}\sin 2x\) b) \({\sin ^2}y + 2\cos x\cos y\cos \left( {x - y} \right) \) \( = {\cos ^2}x + {\cos ^2}\left( {x - y} \right)\) \( \Leftrightarrow 2\cos x\cos y\cos \left( {x - y} \right) - {\cos ^2}\left( {x - y} \right) \) \( = {\cos ^2}x - {\sin ^2}y\) Ta có: \(2\cos x\cos y\cos \left( {x - y} \right) - {\cos ^2}\left( {x - y} \right) \) \( = \cos \left( {x - y} \right)\left[ {2\cos x\cos y - \cos \left( {x - y} \right)} \right]\) \( = \cos \left( {x - y} \right)\left( {\cos x\cos y - \sin x\sin y} \right) \) \( = \cos \left( {x - y} \right)\cos \left( {x + y} \right)\) \( = \frac{1}{2}\left( {\cos 2x + \cos 2y} \right) \) \( = \frac{1}{2}\left( {1 - 2{{\sin }^2}y + 2{{\cos }^2}x - 1} \right) \) \( = {\cos ^2}x - {\sin ^2}y\) Vậy \({\sin ^2}y + 2\cos x\cos y\cos \left( {x - y} \right) \) \( = {\cos ^2}x + {\cos ^2}\left( {x - y} \right)\)
Quảng cáo
|