Giải bài 2.36 trang 32 sách bài tập toán 7 - Kết nối tri thức với cuộc sốngHãy giải thích tại sao Quảng cáo
Đề bài Hãy giải thích tại sao \(\left| {x + y} \right| \le \left| x \right| + \left| y \right|\) với mọi số thực x, y. Phương pháp giải - Xem chi tiết \(\left| {x + y} \right|\)=x+y nếu \(x + y \ge 0\) \(\left| {x + y} \right|\)=- (x+y) nếu \(x + y < 0\) Sử dụng tính chất \(a \le \left| a \right|,\forall a\) Lời giải chi tiết +) Trường hợp 1: Nếu \(x + y \ge 0\) thì \(\left| {x + y} \right| = x + y \le \left| x \right| + \left| y \right|\) (vì \(x \le \left| x \right|, y \le |y|\) với mọi số thực x,y). +) Trường hợp 2: Nếu \(x + y < 0\) thì \(\left| {x + y} \right| = - x - y \le \left| { - x} \right| + \left| { - y} \right| = \left| x \right| + \left| y \right|\) (vì \(-x \le \left|-x \right|, -y \le |-y|\) với mọi số thực x,y). Vậy với mọi \(x,y \in \mathbb{R}\), ta luôn có \(\left| {x + y} \right| \le \left| x \right| + \left| y \right|\)
Quảng cáo
|