TUYENSINH247 LÌ XÌ +100% TIỀN NẠP

X2 TIỀN NẠP TÀI KHOẢN HỌC TRỰC TUYẾN NGÀY 18-20/2

Chỉ còn 1 ngày
Xem chi tiết

Giải bài 2.30 trang 54 sách bài tập toán 12 - Kết nối tri thức

Cho hình lập phương (ABCD.A'B'C'D') có độ dài mỗi cạnh bằng 1. Xét hệ tọa độ (Oxyz) gắn với hình lập phương như hình vẽ bên. a) Tìm tọa độ các đỉnh của hình lập phương. b) Tìm tọa độ trọng tâm (G) của tam giác (B'CD'). c) Chứng minh rằng ba điểm (O,G,A) thẳng hàng.

Quảng cáo

Đề bài

Cho hình lập phương ABCD.ABCD có độ dài mỗi cạnh bằng 1. Xét hệ tọa độ Oxyz gắn với hình lập phương như hình vẽ bên.

a) Tìm tọa độ các đỉnh của hình lập phương.

b) Tìm tọa độ trọng tâm G của tam giác BCD.

c) Chứng minh rằng ba điểm O,G,A thẳng hàng.

Phương pháp giải - Xem chi tiết

Ý a: Tìm tọa độ các đỉnh thuộc tia Ox,Oy,Oz trước, sau đó sử dụng các đẳng thức vectơ bằng nhau để tìm các điểm còn lại. Chú ý sử dụng giả thiết cạnh hình lập phương bằng 1.

Ý b: Dùng công thức tìm tọa độ trọng tâm.

Ý c: Chứng minh OAOG cùng phương bằng đẳng thức OA=kOG.

Lời giải chi tiết

a) Ta có gốc tọa độ là C nên C(0;0;0); B thuộc tia OxOB=1 nên B(1;0;0); D thuộc tia OyOD=1 nên D(0;1;0); C thuộc tia OzOC=1 nên C(0;0;1).

Ta có CC=DD{0=xD0=yD11=zDD(0;1;1); BB=CC{xB1=0yB=0zB=1B(1;0;1);

BA=CD{xA1=0yA=1zA=0A(1;1;0); AA=CC{xA1=0yA1=0zA=1A(1;1;1).

Vậy A(1;1;1), B(1;0;1), C(0;0;1), D(0;1;1), A(1;1;0), B(1;0;0), C(0;0;0)

D(0;1;0).

b) Ta có B(1;0;0), C(0;0;1)D(0;1;0) suy ra G(13;13;13).

c) Ta có OG=(13;13;13); OA=(1;1;1). Suy ra OA=3OG. Vậy ba điểm O,G,A thẳng hàng.

  • Giải bài 2.31 trang 55 sách bài tập toán 12 - Kết nối tri thức

    Trên sân thể dục thầy giáo dựng hai chiếc cột vuông góc với mặt sân, chiều cao của một cột lần lượt là 3 m và 2 m. Xét hệ tọa độ (Oxyz) sao cho mặt phẳng (left( {Oxy} right)) trùng với mặt sân, trục (Oz) hướng thẳng đứng lên trời. Đơn vị trong hệ trục tọa độ được lấy theo mét. a) Biết rằng chân của hai cột có tọa độ lần lượt là (left( {8;5;0} right)) và (left( {3;2;0} right)), hãy tìm tọa độ điểm đầu của mỗi cột. b) Thầy giáo dự định căng một sợi dây nối hai đầu của hai cột. H

  • Giải bài 2.32 trang 55 sách bài tập toán 12 - Kết nối tri thức

    Hình bên mô tả hai bức tường gạch được xây vuông góc với nhau và cùng vuông góc với mặt đất. Một người thợ xây căng dây giữa hai bức tường. Đầu A của sợi dây nằm trên bức tường thứ nhất, cách bức tường thứ 2 là 3 m và cách mặt đất là 1,2 m. Đầu B của sợi dây nằm trên bức tường thứ 2, cách bức tường thứ nhất là 1 m và cách mặt đất là 2 m. a) Hãy lập một hệ trục tọa độ phù hợp và tìm tọa độ của hai đầu (A,B) trong hệ tọa độ đó. b) Tính độ dài của sợi dây được căng.

  • Giải bài 2.29 trang 54 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian (Oxyz), cho tam giác (ABC) với (Aleft( {3;5;2} right)), (Bleft( {0;6;2} right)) và (Cleft( {2;3;6} right)). Hãy giải tam giác (ABC).

  • Giải bài 2.28 trang 54 sách bài tập toán 12 - Kết nối tri thức

    Cho tứ diện (ABCD). Trọng tâm (G) của tứ diện là điểm duy nhất thỏa mãn đẳng thức (overrightarrow {GA} + overrightarrow {GB} + overrightarrow {GC} + overrightarrow {GD} = overrightarrow 0 ). Chứng minh rằng tọa độ của điểm (G) được cho bởi công thức: ({x_G} = frac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4};{y_G} = frac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4};{z_G} = frac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}.)

  • Giải bài 2.27 trang 54 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian (Oxyz), cho tứ diện (ABCD) với (Aleft( {1;3; - 3} right)), (Bleft( {2;0;5} right)), (Cleft( {6;9; - 5} right)) và (Dleft( { - 1; - 4;3} right)). a) Tìm tọa độ trọng tâm (I) của tam giác (ABC). b) Tìm tọa độ của điểm (G) thuộc đoạn thẳng (DI) sao cho(DG = 3IG).

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close