Giải bài 2.21 trang 49 sách bài tập toán 12 - Kết nối tri thứcCho hình chóp tứ giác đều (S.ABCD) có chiều cao bằng 5 và độ dài cạnh đáy bằng 4. Hãy xác định tọa độ các điểm (S,A,B,C,D) đối với hệ tọa độ (Oxyz) có gốc (O) trùng với tâm của hình vuông (ABCD), tia (Ox) chứa (B), tia (Oy) chứa (C) và tia (Oz) chứa (S). Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Quảng cáo
Đề bài Cho hình chóp tứ giác đều \(S.ABCD\) có chiều cao bằng 5 và độ dài cạnh đáy bằng 4. Hãy xác định tọa độ các điểm \(S,A,B,C,D\) đối với hệ tọa độ \(Oxyz\) có gốc \(O\) trùng với tâm của hình vuông \(ABCD\), tia \(Ox\) chứa \(B\), tia \(Oy\) chứa \(C\) và tia \(Oz\) chứa \(S\). Lập hệ trục tọa độ theo giả thiết và xác định tọa độ từng điểm. Phương pháp giải - Xem chi tiết Lời giải chi tiết Ta có \(S\) thuộc tia \(Oz\) và \(OS = 5\) nên \(S\left( {0;0;5} \right)\). Do \(ABCD\) là hình vuông cạnh \(4\) nên \(OA = OB = OC = OD = 2\sqrt 2 \). Ta có \(B\) thuộc tia \(Ox\) và \(OB = 2\sqrt 2 \) suy ra \(B\left( {2\sqrt 2 ;0;0} \right)\); \(D\) thuộc tia đối của tia \(Ox\) và \(OD = 2\sqrt 2 \) suy ra \(D\left( { - 2\sqrt 2 ;0;0} \right)\). Tương tự có \(C\) thuộc tia \(Oy\) và \(OC = 2\sqrt 2 \) suy ra \(C\left( {0;2\sqrt 2 ;0} \right)\); \(A\) thuộc tia đối của tia \(Oy\) và \(OA = 2\sqrt 2 \) suy ra \(A\left( {0; - 2\sqrt 2 ;0} \right)\). Vậy \(S\left( {0;0;5} \right)\), \(A\left( {0; - 2\sqrt 2 ;0} \right)\), \(B\left( {2\sqrt 2 ;0;0} \right)\), \(C\left( {0;2\sqrt 2 ;0} \right)\) và \(D\left( { - 2\sqrt 2 ;0;0} \right)\).
Quảng cáo
|