Bài 2.18 trang 109 SBT giải tích 12

Giải bài 2.18 trang 109 sách bài tập giải tích 12. Tìm khẳng định đúng trong các khẳng định sau:...

Quảng cáo

Đề bài

Tìm khẳng định đúng trong các khẳng định sau:

A. \(\displaystyle{\log _3}\frac{6}{5} < {\log _3}\frac{5}{6}\)

B. \(\displaystyle{\log _{\frac{1}{3}}}17 > {\log _{\frac{1}{3}}}9\)

C. \(\displaystyle{\log _{\frac{1}{2}}}e < {\log _{\frac{1}{2}}}\pi \)

D. \(\displaystyle{\log _2}\frac{{\sqrt 5 }}{2} > {\log _2}\frac{{\sqrt 3 }}{2}\)

Phương pháp giải - Xem chi tiết

Sử dụng tính chất so sánh logarit:

+ Nếu \(\displaystyle 0 < a < 1\) thì \(\displaystyle{\log _a}m < {\log _a}n \Leftrightarrow m > n\).

+ Nếu \(\displaystyle a > 1\) thì \(\displaystyle{\log _a}m < {\log _a}n \Leftrightarrow m < n\).

Lời giải chi tiết

Đáp án A: Vì \(\displaystyle 3 > 1\) và \(\displaystyle\frac{6}{5} > \frac{5}{6}\) nên \(\displaystyle{\log _3}\frac{6}{5} > {\log _3}\frac{5}{6}\) hay A sai.

Đáp án B: Vì \(\displaystyle 0 < \frac{1}{3} < 1\) và \(\displaystyle 17 > 9\) nên \(\displaystyle{\log _{\frac{1}{3}}}17 < {\log _{\frac{1}{3}}}9\) hay B sai.

Đáp án C: Vì \(\displaystyle 0 < \frac{1}{2} < 1\) và \(\displaystyle e < \pi \) nên \(\displaystyle{\log _{\frac{1}{2}}}e > {\log _{\frac{1}{2}}}\pi \) hay C sai.

Đáp án D: Vì \(\displaystyle 2 > 1\) và \(\displaystyle\frac{{\sqrt 5 }}{2} > \frac{{\sqrt 3 }}{2}\) nên \(\displaystyle{\log _2}\frac{{\sqrt 5 }}{2} > {\log _2}\frac{{\sqrt 3 }}{2}\) hay D đúng.

Chọn D.

Loigiaihay.com

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close