Giải Bài 2 trang 39 SGK Toán 8 tập 1 – Chân trời sáng tạoThực hiện các phép chia phân thức sau: Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Khoa học tự nhiên Quảng cáo
Đề bài Thực hiện các phép chia phân thức sau: a) \(\dfrac{{5x}}{{4{y^3}}}:\left( { - \dfrac{{{x^4}}}{{20y}}} \right)\) b) \(\dfrac{{{x^2} - 16}}{{x + 4}} :\dfrac{{2x - 8}}{x}\) c) \(\dfrac{{2x + 6}}{{{x^3} - 8}}:\dfrac{{{{\left( {x + 3} \right)}^3}}}{{2x - 4}}\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết Thực hiện phân tích các đa thức ở tử và mẫu thành nhân tử (nếu cần thiết), sau đó nhân phân thức thứ nhất với nghịch đảo của phân thức thứ hai rồi thực hiện rút gọn. Lời giải chi tiết a) \(\dfrac{{5x}}{{4{y^3}}}:\left( { - \dfrac{{{x^4}}}{{20y}}} \right)\) \( = \dfrac{{5x}}{{4{y^3}}} \cdot \dfrac{{ - 20y}}{{{x^4}}} = \dfrac{{ - 100xy}}{{4{x^4}{y^3}}} = \dfrac{{ - 25}}{{{x^3}{y^2}}}\) b) \(\dfrac{{{x^2} - 16}}{{x + 4}} :\dfrac{{2x - 8}}{x}\) \( = \dfrac{{\left( {x - 4} \right)\left( {x + 4} \right)}}{{x + 4}} \cdot \dfrac{x}{{2x - 8}} = \dfrac{{\left( {x - 4} \right)\left( {x + 4} \right)}}{{x + 4}} \cdot \dfrac{x}{{2\left( {x - 4} \right)}} = \dfrac{x}{2}\) c) \(\dfrac{{2x + 6}}{{{x^3} - 8}}:\dfrac{{{{\left( {x + 3} \right)}^3}}}{{2x - 4}}\) \( = \dfrac{{2\left( {x + 3} \right)}}{{\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)}} \cdot \dfrac{{2\left( {x - 2} \right)}}{{{{\left( {x + 3} \right)}^3}}} = \dfrac{4}{{{{\left( {x + 3} \right)}^2}\left( {{x^2} + 2x + 4} \right)}}\)
Quảng cáo
|