Giải bài 18 trang 48 sách bài tập toán 8 – Cánh diềuMột tam giác có chiều cao bằng \(\frac{1}{4}\) độ dài cạnh đáy tương ứng. Nếu tăng chiều cao đó thêm 2 m và giảm độ dài cạnh đáy tương ứng 2 m thì diện tích tam giác tăng thêm 2,5 m2. Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều Toán - Văn - Anh - Khoa học tự nhiên Quảng cáo
Đề bài Một tam giác có chiều cao bằng \(\frac{1}{4}\) độ dài cạnh đáy tương ứng. Nếu tăng chiều cao đó thêm 2 m và giảm độ dài cạnh đáy tương ứng 2 m thì diện tích tam giác tăng thêm 2,5 m2. Tính chiều cao và độ dài cạnh đáy tương ứng của tam giác ban đầu. Phương pháp giải - Xem chi tiết Các bước giải bài toán bằng cách lập phương trình Bước 1: Lập phương trình - Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số - Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết - Lập phương trình biểu thị mối quan hệ giữa các đại lượng. Bước 2: Giải phương trình Bước 3: Kết luận - Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn, nghiệm nào không thỏa mãn điều kiện của ẩn - Đưa ra câu trả lời cho bài toán. Lời giải chi tiết Gọi \(x\left( m \right)\) là chiều cao của tam giác ban đầu \(\left( {x > 0} \right)\). Khi đó, độ dài cạnh đáy tương ứng là \(4x\left( m \right)\) và diện tích tam giác ban đầu là: \(\left( {x.4x} \right):2 = 2{x^2}\left( {{m^2}} \right)\). Khi tăng chiều cao đó thêm \(2m\) và giảm độ dài đáy tương ứng \(2m\) thì chiều cao mới là \(x + 2\left( m \right)\), độ dài cạnh đáy tương ứng là \(4x - 2\left( m \right)\) và diện tích tam giác lúc đó là: \(\left( {x + 2} \right)\left( {4x - 2} \right):2 = \left( {x + 2} \right)\left( {2x - 1} \right) = 2{x^2} + 3x - 2\left( {{m^2}} \right)\). Vì diện tích tam giác tăng thêm \(2,5{m^2}\), nên ta có phương trình: \(\left( {2{x^2} + 3x - 2} \right) - 2{x^2} = 2,5\). Giải phương trình ta tìm được \(x = 1,5\left( {tmdk} \right)\). Vậy tam giác ban đầu có chiều cao là \(1,5m\) và độ dài đáy tương ứng là \(6m\).
Quảng cáo
|