Giải bài 17 trang 40 sách bài tập toán 8 - Cánh diềuChứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến: Quảng cáo
Đề bài Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến: a) \(M = \frac{{x - 2y}}{{3x + 6y}}:\frac{{{x^2} - 4{y^2}}}{{{x^2} + 4xy + 4{y^2}}}\) b) \(N = \left( {x - \frac{{{x^2} + {y^2}}}{{x + y}}} \right)\left( {\frac{1}{y} + \frac{2}{{x - y}}} \right)\) c) \(P = \left( {\frac{{{x^3} + {y^3}}}{{x + y}} - xy} \right):\left( {{x^2} - {y^2}} \right) + \frac{{2y}}{{x + y}}\) Phương pháp giải - Xem chi tiết Rút gọn các biểu thức để cho giá trị của biểu thức là một hằng số thì giá trị của biểu thức sẽ không phụ thuộc vào giá trị của biến. Lời giải chi tiết a) Rút gọn biểu thức \(M\) ta có: \(\begin{array}{l}M = \frac{{x - 2y}}{{3x + 6y}}:\frac{{{x^2} - 4{y^2}}}{{{x^2} + 4xy + 4{y^2}}}\\ = \frac{{x - 2y}}{{3x + 6y}}.\frac{{{x^2} + 4xy + 4{y^2}}}{{{x^2} - 4{y^2}}}\\ = \frac{{\left( {x - 2y} \right).{{\left( {x + 2y} \right)}^2}}}{{3\left( {x + 2y} \right).\left( {x - 2y} \right)\left( {x + 2y} \right)}}\\ = \frac{1}{3}\end{array}\) Ta thấy \(M = \frac{1}{3}\) vậy giá trị của biểu thức \(M\) không phụ thuộc vào giá trị của biến. b) Rút gọn biểu thức \(N\) ta có: \(\begin{array}{l}N = \left( {x - \frac{{{x^2} + {y^2}}}{{x + y}}} \right)\left( {\frac{1}{y} + \frac{2}{{x - y}}} \right)\\ = \left( {\frac{{x\left( {x + y} \right)}}{{x + y}} - \frac{{{x^2} + {y^2}}}{{x + y}}} \right)\left( {\frac{{x - y}}{{y\left( {x - y} \right)}} + \frac{{2y}}{{y\left( {x - y} \right)}}} \right)\\ = \left( {\frac{{{x^2} + xy - {x^2} - {y^2}}}{{x + y}}} \right)\left( {\frac{{x - y + 2y}}{{y\left( {x - y} \right)}}} \right)\\ = \left( {\frac{{xy - {y^2}}}{{x + y}}} \right)\left( {\frac{{x + y}}{{y\left( {x - y} \right)}}} \right)\\ = \left( {\frac{{y\left( {x - y} \right)}}{{x + y}}} \right)\left( {\frac{{x + y}}{{y\left( {x - y} \right)}}} \right)\\ = 1\end{array}\) Ta thấy \(N = 1\) vậy giá trị của biểu thức \(N\) không phụ thuộc vào giá trị của biến. c) Rút gọn biểu thức \(P\) ta có: \(\begin{array}{l}P = \left( {\frac{{{x^3} + {y^3}}}{{x + y}} - xy} \right):\left( {{x^2} - {y^2}} \right) + \frac{{2y}}{{x + y}}\\ = \left( {\frac{{\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)}}{{x + y}} - xy} \right):\left( {x - y} \right)\left( {x + y} \right) + \frac{{2y}}{{x + y}}\\ = \left( {{x^2} - xy + {y^2} - xy} \right):\left( {x - y} \right)\left( {x + y} \right) + \frac{{2y}}{{x + y}}\\ = \frac{{{x^2} + {y^2} - 2xy}}{{\left( {x - y} \right)\left( {x + y} \right)}} + \frac{{2y}}{{x + y}}\\ = \frac{{{{\left( {x - y} \right)}^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} + \frac{{2y}}{{x + y}}\\ = \frac{{x - y}}{{x + y}} + \frac{{2y}}{{x + y}}\\ = \frac{{x + y}}{{x + y}} = 1\end{array}\) Ta thấy \(P = 1\) vậy giá trị của biểu thức \(P\) không phụ thuộc vào giá trị của biến.
Quảng cáo
|