Giải bài 16 trang 40 sách bài tập toán 8 - Cánh diềuTính một cách hợp lí: Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều Toán - Văn - Anh - Khoa học tự nhiên Quảng cáo
Đề bài Tính một cách hợp lí: a) \(\frac{{39x + 7}}{{x - 2020}}.\frac{{9x - 20}}{{x + 2022}} - \frac{{39x + 7}}{{x - 2020}}.\frac{{8x - 2042}}{{x + 2022}}\) b) \(\frac{{{x^2} - 81}}{{{x^2} + 101}}.\left( {\frac{{{x^2} + 101}}{{x - 9}} + \frac{{{x^2} + 101}}{{x + 9}}} \right)\) c) \(\frac{{{x^2} - 1}}{{x + 100}}.\frac{{2x}}{{x + 2}} + \frac{{1 - {x^2}}}{{x + 100}}.\frac{{x - 100}}{{x + 2}}\) Phương pháp giải - Xem chi tiết Sử dụng các hằng đẳng thức và phương pháp thực hiện phép chia và phép nhân phân thức đại số để thực hiện phép tính. Lời giải chi tiết a) Ta có: \(\begin{array}{l}\frac{{39x + 7}}{{x - 2020}}.\frac{{9x - 20}}{{x + 2022}} - \frac{{39x + 7}}{{x - 2020}}.\frac{{8x - 2042}}{{x + 2022}}\\ = \frac{{39 + 7}}{{x - 2020}}.\left( {\frac{{9x - 20}}{{x + 2022}} - \frac{{8x - 2042}}{{x + 2022}}} \right)\\ = \frac{{39 + 7}}{{x - 2020}}.\frac{{x + 2022}}{{x + 2022}}\\ = \frac{{39 + 7}}{{x - 2020}}\end{array}\) b) Ta có: \(\begin{array}{l}\frac{{{x^2} - 81}}{{{x^2} + 101}}.\left( {\frac{{{x^2} + 101}}{{x - 9}} + \frac{{{x^2} + 101}}{{x + 9}}} \right)\\ = \frac{{\left( {x - 9} \right)\left( {x + 9} \right)}}{{{x^2} + 101}}.\frac{{{x^2} + 101}}{{x - 9}} + \frac{{\left( {x - 9} \right)\left( {x + 9} \right)}}{{{x^2} + 101}}.\frac{{{x^2} + 101}}{{x + 9}}\\ = x + 9 + x - 9 = 2x\end{array}\) c) Ta có: \(\begin{array}{l}\frac{{{x^2} - 1}}{{x + 100}}.\frac{{2x}}{{x + 2}} + \frac{{1 - {x^2}}}{{x + 100}}.\frac{{x - 100}}{{x + 2}}\\ = \frac{{{x^2} - 1}}{{x + 100}}\left( {\frac{{2x}}{{x + 2}} - \frac{{x - 100}}{{x + 2}}} \right)\\ = \frac{{{x^2} - 1}}{{x + 100}}.\frac{{x + 100}}{{x + 2}}\\ = \frac{{{x^2} - 1}}{{x + 2}}\end{array}\)
Quảng cáo
|