Giải bài 15 trang 39 sách bài tập toán 8 - Cánh diều

Thực hiện phép tính:

Quảng cáo

Đề bài

Thực hiện phép tính:

a) \(\frac{1}{{{x^2} - x + 1}}:\frac{{x + 1}}{{x - 1}}\)

b) \(\frac{{x + y}}{{2x - y}}:\frac{1}{{x - y}}\)

c) \(\frac{{{x^3}y + x{y^3}}}{{{x^4}y}}:\left( {{x^2} + {y^2}} \right)\)

d) \(\frac{{{x^3} + 8}}{{{x^2} - 2x + 1}}:\frac{{{x^2} + 3x + 2}}{{1 - {x^2}}}\)

Phương pháp giải - Xem chi tiết

Sử dụng các hằng đẳng thức và phương pháp thực hiện phép chia và phép nhân phân thức đại số để thực hiện phép tính.

Lời giải chi tiết

a) \(\frac{1}{{{x^2} - x + 1}}:\frac{{x + 1}}{{x - 1}} = \frac{1}{{{x^2} - x + 1}}.\frac{{x - 1}}{{x + 1}} = \frac{{x - 1}}{{{x^3} + 1}}\)

b) \(\frac{{x + y}}{{2x - y}}:\frac{1}{{x - y}} = \frac{{x + y}}{{2x - y}}.\frac{{x - y}}{1} = \frac{{{x^2} - {y^2}}}{{2x - y}}\)

c) \(\frac{{{x^3}y + x{y^3}}}{{{x^4}y}}:\left( {{x^2} + {y^2}} \right) = \frac{{xy\left( {{x^2} + {y^2}} \right)}}{{{x^4}y}}.\frac{1}{{{x^2} + {y^2}}} = \frac{1}{{{x^3}}}\)

d) \(\frac{{{x^3} + 8}}{{{x^2} - 2x + 1}}:\frac{{{x^2} + 3x + 2}}{{1 - {x^2}}} = \frac{{\left( {x + 2} \right)\left( {{x^2} - 2x + {y^2}} \right)}}{{{{\left( {x - 1} \right)}^2}}}.\frac{{ - \left( {x - 1} \right)\left( {x + 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}} =  - \frac{{{x^2} - 2x + 4}}{{x - 1}}\)

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close