Giải bài 1.54 trang 28 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Cho \(\cos \alpha = \frac{3}{4},\,\sin \alpha > 0;\,\,\sin \beta = \frac{3}{5};\,\beta \in \left( {\frac{{9\pi }}{2};5\pi } \right)\).

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Cho \(\cos \alpha  = \frac{3}{4},\,\sin \alpha  > 0;\,\,\sin \beta  = \frac{3}{5};\,\beta  \in \left( {\frac{{9\pi }}{2};5\pi } \right)\).

Hãy tính \(\cos 2\alpha ,\,\,\sin 2\alpha ,\,\,\cos 2\beta ,\,\,\sin 2\beta ,\,\,\cos (\alpha  + \beta ),\,\,\sin (\alpha  - \beta )\).

Phương pháp giải - Xem chi tiết

Áp dụng công thức góc nhân đôi, công thức cơ bản, công thức cộng:

\(\cos 2\alpha  = 2{\cos ^2}\alpha  - 1\);

\(\sin 2\alpha  = 2\sin \alpha \cos \alpha \);

\({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\);

\(\cos (\alpha  + \beta ) = \cos \alpha \cos \beta  - \sin \alpha .\sin \beta \);

\(\sin (\alpha  - \beta ) = \sin \alpha \cos \beta  - \cos \alpha .\sin \beta \).

Lời giải chi tiết

Ta có \(\cos 2\alpha  = 2{\cos ^2}\alpha  - 1 = 2.\frac{9}{{16}} - 1 = \frac{1}{8}.\)

Ta có \({\sin ^2}\alpha  = 1 - {\cos ^2}\alpha  = 1 - {\left( {\frac{3}{4}} \right)^2} = \frac{7}{{16}}\). Lại do \(\sin \alpha  > 0\) nên \(\sin \alpha  = \frac{{\sqrt 7 }}{4}\).

Suy ra \(\sin 2\alpha  = 2\sin \alpha \cos \alpha  = 2.\frac{{\sqrt 7 }}{4}.\frac{3}{4} = \frac{{3\sqrt 7 }}{8}\).

Ta có \(\cos 2\beta  = 1 - 2{\sin ^2}\beta  = 1 - 2.\frac{9}{{25}} = \frac{7}{{25}}\).

Ta có \({\cos ^2}\beta  = 1 - {\sin ^2}\beta  = 1 - {\left( {\frac{3}{5}} \right)^2} = \frac{{16}}{{25}}\).

Lại do \(\beta  \in \left( {\frac{{9\pi }}{2};5\pi } \right)\) nên \(\cos \beta  < 0\), do đó \(\cos \beta  =  - \frac{4}{5}\). Suy ra

\(\sin 2\beta  = 2\sin \beta \cos \beta  = 2.\frac{3}{5}.\left( { - \frac{4}{5}} \right) =  - \frac{{24}}{{25}}\)

Ta có

\(\cos (\alpha  + \beta ) = \cos \alpha \cos \beta  - \sin \alpha .\sin \beta  = \frac{3}{4}.\left( { - \frac{4}{5}} \right) - \frac{{\sqrt 7 }}{4}.\frac{3}{5} = \frac{{ - 12 - 3\sqrt 7 }}{{20}}.\)

\(\sin (\alpha  - \beta ) = \sin \alpha \cos \beta  - \cos \alpha .\sin \beta  = \frac{{\sqrt 7 }}{4}.\left( { - \frac{4}{5}} \right) - \frac{3}{4}.\frac{3}{5} = \frac{{ - 9 - 4\sqrt 7 }}{{20}}.\)

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close