Giải bài 1.43 trang 31 sách bài tập toán 12 - Kết nối tri thứcMột chiếc hộp dạng hình hộp chữ nhật có đáy là hình vuông và có thể tích là \(2000\) cm3. Các kích thước của chiếc hộp là bao nhiêu nếu muốn lượng vật liệu dùng để sản xuất chiếc hộp là nhỏ nhất? Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Quảng cáo
Đề bài Một chiếc hộp dạng hình hộp chữ nhật có đáy là hình vuông và có thể tích là \(2000\) cm3. Các kích thước của chiếc hộp là bao nhiêu nếu muốn lượng vật liệu dùng để sản xuất chiếc hộp là nhỏ nhất? Phương pháp giải - Xem chi tiết + Đặt độ dài cạnh đáy là \(x\). + Biểu diễn chiều cao của hộp theo \(x\). + Suy ra công thức tính diện tích toàn phần của hộp. + Tìm giá trị nhỏ nhất của diện tích đó. Lời giải chi tiết Gọi cạnh đáy của hình hộp là \(x\) cm, \(x > 0\). Do thể tích chiếc hộp là \(2000\) cm3 nên chiều cao chiếc hộp là \(\frac{{2000}}{{{x^2}}}\) (cm). Suy ra, tổng diện tích bề mặt chiếc hộp là \(S = 2{x^2} + 4x \cdot \frac{{2000}}{{{x^2}}} = 2{x^2} + \frac{{8000}}{x},{\rm{ }}x > 0\). Lượng vật liệu dùng để sản xuất chiếc hộp nhỏ nhất khi tổng diện tích bề mặt chiếc hộp nhỏ nhất hay \(S\) đạt giá trị nhỏ nhất. Ta có \(S' = {\left( {2{x^2} + \frac{{8000}}{x}} \right)^\prime } = \frac{{4{x^3} - 8000}}{{{x^2}}}\) khi đó \(S' = 0 \Leftrightarrow \frac{{4{x^3} - 8000}}{{{x^2}}} = 0 \Leftrightarrow x = 10\sqrt[3]{2}\). Lập bảng biến thiên: Từ bảng biến thiên suy ra \(S\) đạt giá trị nhỏ nhất tại \(x = 10\sqrt[3]{2}\), khi đó \(\frac{{2000}}{{{x^2}}} = \frac{{20}}{{\sqrt[3]{4}}}\). Vậy khi hộp có cạnh đáy \(10\sqrt[3]{2}\) cm và chiều cao là \(\frac{{20}}{{\sqrt[3]{4}}}\) cm thì lượng vật liệu dùng để sản xuất hộp nhỏ nhất.
Quảng cáo
|