Giải Bài 1.41 trang 27 SGK Toán 8 tập 1 - Kết nối tri thức

Tích của hai đơn thức (6{x^2}yz) và ( - 2{y^2}{z^2}) là đơn thức A. (4{x^2}{y^3}{z^3}) B. ( - 12{x^2}{y^3}{z^3}) C. ( - 12{x^3}{y^3}{z^3}) D. (4{x^3}{y^3}{z^3}).

Quảng cáo

Đề bài

Tích của hai đơn thức \(6{x^2}yz\) và \( - 2{y^2}{z^2}\) là đơn thức
A. \(4{x^2}{y^3}{z^3}\)
B. \( - 12{x^2}{y^3}{z^3}\)
C. \( - 12{x^3}{y^3}{z^3}\)
D. \(4{x^3}{y^3}{z^3}\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+ Muốn nhân hai đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các kết quả với nhau.

Lời giải chi tiết

\(6{x^2}yz.\left( { - 2{y^2}{z^2}} \right) = \left[ {6.\left( { - 2} \right)} \right].{x^2}.\left( {y.{y^2}} \right).\left( {z.{z^2}} \right) =  - 12{x^2}{y^3}{z^3}\)

Chọn B.

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close