Giải bài 1.29 trang 21 SGK Toán 8 tập 1 - Kết nối tri thứcChứng minh đẳng thức sau: = Quảng cáo
Đề bài Chứng minh đẳng thức sau: \(\left( {2x + y} \right)\left( {2{x^2} + xy - {y^2}} \right) = \left( {2x - y} \right)\left( {2{x^2} + 3xy + {y^2}} \right)\). Video hướng dẫn giải Phương pháp giải - Xem chi tiết Thực hiện phép nhân đa thức với đa thức ở 2 vế. Muốn nhân đơn thức với đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau. Sau đó, nhóm các hạng tử đồng dạng để thu gọn đa thức. Lời giải chi tiết Ta có: \(\begin{array}{l}\left( {2x + y} \right)\left( {2{x^2} + xy - {y^2}} \right)\\ = 2x.2{x^2} + 2x.xy - 2x.{y^2} + y.2{x^2} + y.xy - y.{y^2}\\ = 4{x^3} + 2{x^2}y - 2x{y^2} + 2{x^2}y + x{y^2} - {y^3}\\ = 4{x^3} + \left( {2{x^2}y + 2{x^2}y} \right) + \left( { - 2x{y^2} + x{y^2}} \right) - {y^3}\\ = 4{x^3} + 4{x^2}y - x{y^2} - {y^3}\\\left( {2x - y} \right)\left( {2{x^2} + 3xy + {y^2}} \right)\\ = 2x.2{x^2} + 2x.3xy + 2x.{y^2} - y.2{x^2} - y.3xy - y.{y^2}\\ = 4{x^3} + 6{x^2}y + 2x{y^2} - 2{x^2}y - 3x{y^2} - {y^3}\\ = 4{x^3} + \left( {6{x^2}y - 2{x^2}y} \right) + \left( {2x{y^2} - 3x{y^2}} \right) - {y^3}\\ = 4{x^3} + 4{x^2}y - x{y^2} - {y^3}\end{array}\) Do đó, \(\left( {2x + y} \right)\left( {2{x^2} + xy - {y^2}} \right) = \left( {2x - y} \right)\left( {2{x^2} + 3xy + {y^2}} \right)\)
Quảng cáo
|